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FlTNDAMENTALS OF THl3 ANALrrICAL MECHANICS 
OF SHELLS 

By N. A. Kil'chevskiy 

The book discusses ana ly t ic  methods of constructing
e l a s t o s t a t i c  and elastodynamic systems of d i f f e r e n t i a l  and 
i n t e g r a l  equations of s h e l l  theory without requir ing t h e  
use of addi t iona l  assumptions on t h e  deformation of t he  
s h e l l s ,  and a l s o  methods of solving t h e  systems of i n t e g r a l  
equations by reducing them t o  systems of ordinary differen
t i a l  and algebraic  equations. 

No use i s  made of t h e  well-known assumptions t h a t  con
s t i t u t e  t h e  foundation of c l a s s i c a l  s h e l l  theory, but t he  
author starts out  from t h e  general p r inc ip les  of e l a s t i c i t y  
theory and der ives  more exact d i f f e r e n t i a l  equations of t h e  
s h e l l  theory, of higher order than those of t h e  c l a s s i c a l  
theory 

The book is  intended f o r  s c i e n t i s t s ,  post-graduate stu
dents and technical  university students spec ia l iz ing  i n  t h e  
theory of e l a s t i c  she l l s .  

Numbers i n  margin refer t o  pagination i n  foreign text. 

iii 






TABLE OF CONTENTS 
Page 

PREFACE ...................................................... xi 


INTRODUCTION ................................................. 1 


CHAPTER I. Elements of Tensor A n a l y s i s  and t h e i r  Application 6 

t o  the  Dif fe ren t ia l  Geometry of Shel ls  ........... 6 


Section 1. General Characterist ics of the  Application of 

Tensor Analysis t o  t he  Theory of Shel ls  ....... 6 


Section 2. Systems of Curvilinear Coordinates . Metrics 

of Space. The Symbol f o r  Summation ........... 7 


Section 3 . Metrics i n  Shel ls  ............................. 10 

Section 4. Shel ls  of Revolution . Special  Cases of 


Shel ls  of Revolution . Arbitrary Cylindrical 
Shel ls  ........................................ 11 

1. The Circular Cylindrical She l l  ............ 12 

2 . The Conical Cylindrical She l l  ............. 13 

3. The She l l  with the  Base A r e a  i n  t h e  Form 


of a Hyperboloid of  Revolution ............ 13 

Section 5 . Scalars . Vectors and t h e i r  Contravariant and 


Covariant Components . The Mutual Coordinate 
Base .......................................... 11 


Section 6 . Tensors of Various Ranks and Structures . The 

Metric Tensor of the  She l l  .................... 20 


Section 7. Operations of Tensor Algebra .................. 22 

1. Addition .................................. 22 

2 . Multiplication ............................ 22 

3. Contraction ............................... 23

4. 'PRaising'r and rFLowerhg*iof Indices ....... 24

5. Permutation of Indices . Symnetrization 

and Alternation ........................... 25 

Section 8 . Various Applications of Tensor Algebra ........ 26 


1. Second Analytic Definit ion of a Tensor .... 26 

2 . Antisymmetric Tensor of Second Rank as 


a Vector i n  Three-Dimensional Space ....... 26 

3. Vector Product of Two Vectors i n  an 


Arbitrary Coordinate System ............... 28 

4 . Pseudoscalars and Pseudovectors ........... 28 


Section 	9 . Absolute Di f fe ren t ia l  of a Tensor . Tensor 

Field and t h e  Absolute Derivative ............. 29 

1. Absolute Dif fe ren t ia l  of a Vector ......... 29 

2 . Absolute Dif fe ren t ia l  of a Tensor of 


Arbitrary Rank and Structure  .............. 33 

3 . Tensor Field . The Absolute (Covariant) 


Derivative of a Tensor of Arbitrary Rank 

and Structure  ............................. 34 


V 




Page 

Section 10. 	 P a r a l l e l  Displacement of Tensors i n  t h e  
Sense of Levi-Civita. The Tensor of 
Curvature' ......................~*..~.......*35 
1. Para l l e l  Displacement ................... 35 
2. 	 Tensor of Curvature (Riemann-Christof f e l  

Tensor) ................................. 35 
3.  	 Change of t h e  Sequence of Operations i n  

Successive Absolute Different ia t ion ..... 38 
4. Geometric Construction o f  t he  Covariant 

Derivative .............................. 39 
Section 11. Operator of Parallel Displacement of Tensor 

Quantities on the Base Area of a She l l  ...... 39 
Section 	12. Expansion of Tensor Functions i n  

Generalized Taylor Ser ies  ................... 44 
1. 	 Analytical Defini t ion of the  Radius 

Vector of a Point of Space i n  Curvi
l i nea r  Coordinates ...................... 44 

2. 	 Expansion of Tensor Functions i n  
Generalized Taylor Ser ies  ............... 44 

CHAPTER 11. 	 Principal  Relations of t h e  Nonlinear Theory 
of E l a s t i c i t y  i n  the  Invariant Form ............ 46 

Section 1. Euler and Iagrange Variables. Displacement 
Vector, Velocity Vector, and Acceleration 
Vector of  an Element of a Continuous Medium ... 4.6 

Section 2. Tensor of Small Deformations and Tensor of 
F in i t e  Deformations .......................... 47 
1. 	 Tensor of Small Deformations and Vector 

of Small Rotation of an Element of a 
Continuous Medium ........................ 4.7 

2. Tensor of F in i t e  Deformations ............ 49 
3. Concluding Remarks ....................... 50 

Section 3.  Conditions of Compatibility ............. .. ... ..... 50 
Section 4. S t r e s s  Tensor. Generalized Hookfs Law 51 

1. 	 Linear Generalization of Hooke's Law. 
Physical and Geometric Nonlinearity of 
the Equations of the  Theory of E l a s t i c i t y  .. 51

2. The Nonlinear Hookefs Law ................ 53 
3 .  Concluding Remarks ....................... 54. 

Section 	5. Equations of Motion of an Element of a 
Continuous Medium. The Linear Lame' Equations .. 55 
1. 	 Equations of Motion of an Element of a 

Continuous 3iedium i n  an Arbitrary 
System of Lagrange Coordinates ........... 55 

2. Linear Lam6 Equations ...a ................ 56 
Section 	6.  Relationships between Covariant Derivatives 

i n  Deformed and Undeformed Media ............. 57 
1. Fundamental Determinant ................... 57 

vi 




2. 	 Covariant and Contravariant Components 
of t h e  Metric Tensor of a Deformed 
Medium ................................... 

3. 	 Chris tof fe l  Symbol i n  a Deformed 
Medium .................................. 

4. 	 Covariant Derivative i n  a Deformed 
Medium ..................................... 

5.  Conclusion ............................... 
Section 7. Nonlinear Lame’ Equations ..................... 
Section 8. Initial and Boundary Nonlinear Conditions. 

Conditions of Contact of Layers .............. 
1. I n i t i a l  Conditions ....................... 
2. Nonlinear Boundary Conditions ............ 
3 .  	 Conditions of Contact on Surfaces of 

Separation of Media with b t t e r  of Differ
ent  Mechanical Characterist ics ........... 

4. General Characterization of t h e  Formula
t i o n  of Monlinear Woblerns of t he  Theory 
of E l a s t i c i t y  ............................ 

Section 9. In t e rna l  and External Nonlinear Problems ..... 
Section 10. 	Extension of t he  Kinematic Relations of t he  

Kirchhoff-Clebsch Thin-Rod Theory t o  She l l  
Theory ........................................ 

Section 11. Potent ia l  Energy of Deformation and Kinetic 
Energy of t he  E la s t i c  Body .................... 

Section 12. 	Work and Reciprocity Theorem i n  Nonlinear 
E l a s t i c i t y  Theory ............................. 

Section 13. E la s t i c  Medium with I n i t i a l  Stresses  .......... 
CHAPTER 111. 	 Reduction of the  Three-Dimensional Problems of 

t h e  Mechanics of E la s t i c  Bodies t o  t h e  Two-
Dimensional Problems of the  Theory of Shel l s  ... 

Section 1. 
Section 2. 

Section 3 .  

Section 4. 

Section 5. 

Section 6 .  
Section 7. 

General Characterization of  the  Problem ....... 
Remarks on t h e  Methods of Reduction given 
by Poisson, Cauchy, Kirchhoff, and Love ....... 
Preliminary Classif icat ion of Shel ls  i n  
Connection with t h e  Kirchhoff-Love Hypotheses. 
Linear and Nonlinear Problems ................. 
Application of Tensor Ser ies .  Reduction of 
t h e  Three-Dimensional Problem t o  the  Determina
t i o n  of a n  I n f i n i t e  Sequence of Functions of a 
Point of t h e  Base Area of t he  Shel l  ........... 
Reduction of the  Three-Dimensional Problem 
t o  t h e  Determination of S i x  Functions of a 
Point of t he  Base A r e a  of t he  She l l  ........... 
Application of t he  Symbolic Method ............ 
Ebqressions f o r  t he  Vormal” Part of t h e  S t r e s s  
Tensor. The Equations Defining the  Fundamental 

Page 

57 

59 

61 
61  
62 

63 
63 
64. 

67 

67 
68 

70 

74 

75 
77 

80 

80 

81 

83 

86 

89 
90 

vii 


I 




Functions ................................... 92 
Section 8 .  Further Development of t h e  C las s i f i ca t ion  

of Shel l s  with Respect t o  Dynamic Problems ... 95 
Section 9 .  Method of Successive Approximations ......... 98 
Section 10. Expansion of t h e  Deformation Tensor i n t o  a 

Tangential Par t  and a Normal Par t  ..... ..... 101 
Section 11. Two Methods of S e t t i n g  up the  Equations of 

t h e  Theory of She l l s ,  both Connected with 
t h e  Method of Successive Approximations. 
F i r s t  Version of Establishment of t h e  Elas
todynamic System of Equations ............... 103 

Section 12. Approximate Expressions f o r  t h e  Components 
of t he  Displacement Vector and t h e  Com
ponents of t h e  S t r e s s  Tensor ................ 110 

Section 13. Boundary Conditions ......................... 112 
1. F i r s t  Boundary Problem ................... 112 
2. Second Boundary Problem .................. 113 

Section l.4.I n i t i a l  Conditions. General Remarks on t h e  
F i r s t  Version of t h e  Solution of t h e  Problem 
of Reduction ................................ 116 

Section 15. Application of t he  General Equations of 
Dynamics t o  t h e  Solution of the  Problem of 
Reduction ................................... 119 

Section 16. D i f f e ren t i a l  Equations of t h e  Osci l la t ions 
of a S h e l l  .................................. 

Section 17. Natural Boundary Conditions Derived from 
the  Variational Equations (Bib1.15,16) ... 126 
1. With Rigidly Attached Contour Surface .... 127 
2. With Free Contour Surface ............... 127 

Section 18. I n i t i a l  Conditions .......................... 127 
Section 19. On Concentrated Forces ...................... 129 
Section 20. Second Version of t he  Solution of t h e  

Problem of Reduction ........................ 132 
Section 21. F i r s t  Group of Elastodynamic Equations of 

t h e  Theory of She l l s  ........................ 134. 
Section 22. Second Group of  Elastodynamic Equations of 

the  Theory of She l l s  ........................ 135 
Section 23. Boundary and I n i t i a l  Conditions ............. 137 
Section 24.. Generalized Conclusions and Further Develop

ment of t he  Analytic Mechanics of Shel l s  .... 138 
1. 	 Choice of Generalized Coordinates Cor

responding t o  the  Optimum Quadratic 
Approximations .......................... 138 

2. 	 One of t he  New Versions of t he  Choice 
of Generalized Coordinates .............. 14.7 

Section 25. Application of Analytic Methods t o  the  
Theory of Osci l la t ions of layered Shel l s  .... 

Section 26. Equations of Osc i l la t ion  of a Two-
layered She l l  ............................... 150 

viii 




Section 27. D i f f e ren t i a l  Equations of Motion of a 

Two-Layered Shel l  ............................ 158 


Section 28. Natural Boundary Conditio- .................. 160 

1. With the  Contour Surface Kinematically 

not Free ................................. 160 
2 .  With the  Contour Surface Free ............ 160 


Section 29. Classic Theory of Shel ls  ..................... 162 

1. Forces and Moments ....................... 162 

2. Equations of Equilibrium and Motion ...... 165 


Section 30. B r i e f  Survey of Recent Results of Reducing 

t he  Three-Dimensional Problem of t h e  Theory 

of E l a s t i c i t y  t o  the  Two-Dimensional Problem 

of the  Theory of Shel ls  ...................... 167 

1. Reduction by the  Use of Series.  Appli


cation of the  DtAlembert-Lagrange Principle .. 168 

2. The tlSemi-Inverset' Method of Reduction .... 169 

3 .  	Reduction by Determining the  Coeffi

c ien ts  of the  Expansion of the  Displace
ment Vector Components i n  Se r i e s ,  i n  special
Functions of the  z Coordinate ............. 170 


4. 	Generalized Formulations of the  Dynamic 

Problems of t h e  Theory of Plates  and 

Shel ls  .................................... 171 


Section 31. Comparison of Various Methods of Reduction .... 171 

1. Equations Obtained by Use of Expansions 


i n  Tensor Ser ies  .......................... 172 

2. 	Equations Resulting from the  DtAlembert-


Lagrange Principle ........................ 172 


CHAPTER I V .  Approximately Equivalent Systems ................ 173 


Section 1. Introductory Remarks .......................... 173 

Section 2. F i r s t  Method of Linear A p p r o d t i o n  of the  


Components of t he  S t r e s s  Tensor and the  

Finite-Deformation Tensor ..................... l73 

1. On the  Construction of an Isotropic , 


Approxhately Equivalent, E l a s t i c  Body ..... 173 

2. 	 Connection with the  Theory of Optimum


Systems .................................... 179 

3 .  Determination of t he  Parameter a ........... 179 


Section 3. Second Method of Linear Approximation of  t he  

Components of t he  S t ress  Tensor and t h e 

Finite-Deformation Tensor ..................... 182 

1. Preliminary Select ion of t h e  Region of  


Approximate Representation of t h e  Poten t ia l  

Energy by t h e  k e r g y  110 .................... 189 


2. 	 Preliminary Delimitation of the  Region of 

Variation of t he  Quantit ies nik ............ 190 


ix 




3. 	Determination of t he  Averaged Quant i t ies  
of X4t and p* .............................. 

Section 3a. Further Development of the  Method of Linear 
Approximation ................................. 

Section !+. Linearization i n  an Element of t he  Shel l  ..... 
Section 5. 	 On the  Relation between Linear Approxi

mation of the  Components of t h e  Finite-
Deformation Tensor and t h e  Method of  Equiva
l e n t  Linearization and the  Probability 
Methods. Further Stages of Successive 
Approximations ............................... 

Section 6. 	 On Axisymmetric Deformations and Elas t ic  
S tab i l i t y  of a Circular Tube Subjected t o  
the  Action of hng i tud ina l  Compressive 
Forces ....................................... 
1. Evaluation of t h e  Effect of  the Compon
ent GI on the Stressed S ta t e  of a Shell, 
Depending on the  Ratios To, :T and h:R ........ 

Section 7. Brief Conclusions ............................ 
1. On the  Mechanism of Development of a 
Local Equilibrium and Motion I n s t a b i E t y  
of a Shel l  ................................... 
2. Role of Random Imperfections of Shape ..... 
3. Region of  S t a t i s t i c a l  In s t ab i l i t y  ......... 

Section 8. Construction of a Uniform Isotropic Shel l  
Approximately Equivalent t o  a Layered Shel l  ... 
1. Application of an Incompatible System 

of Algebraic Equations .................... 
2. Evaluation of the Weights cl .............. 
3. 	Application of the  Weighted Quadratic 

Approximation ............................. 
4.  	Application of Boundary-Problem Solu

t ions  of the  Dynamics of Homogeneous 
Shells t o  the  Construction of a Homo
geneous Shel l  Approximately Equivalent 
t o  a layered Shel l  ........................ 

Section 9. 	 Construction of  t he  Approximate Solution 
of Problems of the Dynamics of Layered 
Shells. Application of the  Method of Per
turbations and Non-Removable Errors .......... 

Section 10. 	Application of Optimum Quadratic Approxi
mations t o  the Problem of Reduction of the 
Three-Dimensional Problem of Elas t ic i ty  
Theory t o  the Two-Dimensional. Problem ........ 

Section 11. Approximate Expressions of the  Displace
ment Vector Components and the Equations 
of Motion of a She1.l ......................... 

Section 12. 	Boundary Conditions. Various Versions of 
t h e  Solution of the General Problem of the 

Page 

190 

191 
192 

198 

200 

208 
224 

224 
225 
225 

220 

227 
238 


240 


247 

253 

255 

258 

X 




Page 

Dynamics of Shel ls .  Init ial  Conditions ..... 270 

1.. Remarks on Boundary Conditions ........... 270 

2. 	 On t h e  Ekistence and Uniqueness of 


Solutions of the  Boundarg Problems Posed ... 271 

3. Natural Boundary Conditions .............. 272 


Section 	13. Approximate Methods of Invest igat ing t h e  

Equilibrium and 0sci l . la t ions of Shel l s  as 

Discrete-Continuum Systems .................. 275 


Section 1.4. The Fundamental Discrete System of Un

knowns ...................................... 276 


Section 15. Boundary Conditions and t h e  Equations of 

Connectivity. Init ial  Conditions ............. 279 

1. F i r s t  Boundary Problem ................... 280 

2. Second Boundary Problem .................. 281. 
3. I n i t i a l  Conditions ....................... 282 


Section 16. Equations of Motion of a S h e l l  .............. 283 

Section 17. Concluding Remarks .......................... 284 


CHAPTER V. 	 In tegra l  and Integro-Differential Equations 

of t h e  Theory of She l l s  ....................... 286 


Section 1. General Charac te r i s t ics  of t he  Contents 
of t he  Concluding Chapter ................... 286 


Section 2. Elementary Solutions of  t h e  Three-

Dimensional Problems of t h e  Theory of 

E l a s t i c i t y  Containing Singular Points 

and Lines ................................... 286 


Section 3.  Integro-Differential and In t eg ra l  Equa

t i ons  of t h e  S t a t i c s  of She l l s  w'ith Focusing 
Kerne1.s ..................................... 300 


Section 4. Methods of Approximate Solution of a 

System of In t eg ra l  Equations of She l l  

Theory ...................................... 3 14 


Section 5. Integro-Differential and In t eg ra l  Equa

t i o n s  of t h e  Dynamics of She l l s  ............. 320 

1. Stationary Osc i l la tory  Process ........... 322 

2. Nonstationary Osc i l la tory  Process ........ 323 


Section 6. Local. Systems of Integro-Differential 

Equations of t h e  Dynamlcs of Shel l s  with 
Focusing Kernels and t h e i r  Approximate 
Solution .................................... 32k 
1. Stationary Osc i l la tory  Processes. The 


Frequency Spectrum ....................... 325 

2. Nonstationary Processes .................. 327 


Section 7. Application of t h e  Discrete-Continuum 

Method ...................................... 329 


Section 8. Nonlinear Integro-Differential Equations 

of t h e  Dynamics of Shells ................... 334 


Section 9. On t h e  Construction of Kernels of 


xi 




Page 

Integro-Differential Equations with 
Focusing Properties ......................... 343 


Section 10. 	Integro-Differential Equations Defining 
Contiguous Solutions of t h e  Boundary 
Problems of t h e  S t a t i c s  and Dynamics of 
Shel l s  ...................................... 345 


Section 11. Concluding Remarks on t h e  Integro-

Dif fe ren t i a l  and In t eg ra l  Equations of t h e  

S t a t i c s  and Dynamics of She l l s  .............. 347 


350 


354 


SUBJECT INDEX ............................................ 356 


xii 



PREFACE Le 

The s t a t i c s  and dynamics of t h i n  e l a s t i c  she l l s  have been comprehensively 
studied, but  the  problem of  developing accurate and ef fec t ive  methods of calcu
l a t i n g  she l l s  s t i l l  retains a l l  of i t s  current in te res t .  

The object  of the  present work i s  t o  study and systemize various new 
boundary problems of the  s h e l l  theory and the methods of t h e i r  solution de
rived from the general equations of the  s t a t i c s  and dynamics of e l a s t i c  bodies 
i n  the three-dimensionally s t ress -s t ra in  state. This invest igat ion permits an 
indicat ion of e f fec t ive  methods f o r  solving these boundary problems i n  both 
l i n e a r  and nonlinear form. The in t e r r e l a t ion  between the  three-dimensional 
problems of the  e l a s t i c i t y  theory and the  two-dimensional problems of t h e  
she l l  theory i s  ana ly t ica l ly  established, without requiring the  use of auxili
ary kinematic hypotheses, such as the  most familiar of a l l ,  namely tha t  of 
Kirchhoff and Love. 

The general method of invest igat ion i s  ref lected i n  the  arrangement of 
the  Chapters and Sections. The bas ic  concepts of t he  book a re  linked with the  
ana ly t ica l  invest igat ions of the problems of she l l  theory which the author 
f i rs t  took up i n  1937-1938. 

It must not, however, be assumed tha t  t h i s  work i s  a mere recapi tulat ion 
of the r e su l t s  of twenty years of work. Those r e s u l t s  a r e  given only p a r t i a l l y  
here and must be regarded as preparatory stages i n  the development of new 
methods of the  ana ly t ic  theory of she l l s  s e t  fo r th  i n  the  main Chapters of t h i s  
book. I n  turn, the book focuses the  a t ten t ion  of the  reader on the s t a tus  o f  
the  invest igat ions now completed by the  author, and const i tutes  another s tep  
toward the  next stage i n  the  analyt ic  theory of  shells.  T h i s  i s  why the book 
should be regarded a s  a first pa r t  of the study on she l l  theory. The second 
pa r t  w i l l  be ready t o  go t o  press i n  or about 1961,. 

'de have included i n  the  book the pr inc ip les  of the  analyt ic  theory of 
she l l s ,  confining ourselves t o  an extended discussion of the new methods and of 
the  resu l t ing  general formulations of the boundary problems of the s t a t i c s  and 
dynamics of shel ls ,  i l l u s t r a t e d  by a l imited number of examples. The second 
par t  of the book consis ts  of appl icat ions of the  theory t o  spec i f ic  problems. 
These appl icat ions w i l l ,  i n  turn, undoubtedly encourage the  fur ther  develop
ment and enrichment of the  theory. 

The reader i s  assumed t o  be acquainted with mathematical analysis  a t  the  
univers i ty  level ,  theore t ica l  mechanics, theory of e l a s t i c i t y ,  and c l a s s i ca l  
theory of shells.  

The special  methods of mathematical analysis,  par t icu lar ly  the  tensor  cal
culus, a l so  play a considerable ro l e  in  t h i s  work. This i s  because of the  f a c t  
t h a t  t he  apparatus of modern higher geometry, namely the  tensor  calculus, i s  
bes t  sui ted f o r  the  construction of the  ana ly t ica l  mechanics of shel ls .  We 
therefore  deemed it expedient t o  make use of this apparatus, which i s  gradually 

xiii 




penetrating other  f i e l d s  of technical science. I n  Chapters I and I1 we give 
the  bas ic  information on tensor  analysis  and nonlinear e l a s t i c i t y  theory, nec
essary for t he  understanding of the theory of s h e l l s  which i s  developed there
after. 

The reader will note t h a t  cer ta in  o f  our  new results i n  the  nonlinear /10
theory of e l a s t i c i t y ,  which are included i n  Chapter 11, a r e  not fur ther  men
tioned i n  the  l a te r  Chapters concerning the  theory of shells.  These resu l t s ,  
however, will be applied i n  t h e  next par t  of t he  book. 

Although the  t i t l e  of the present book i s  "Principles of t he  Analytic Me
chanics of Shells", it does not contain an exhaustive treatment of the applica
t i o n s  of the  mechanics of Lagrange, Ostrogradskiy, Hamilton, Gauss, Jacobi, 
Hertz ,  Chaplygin, and o thers  t o  the problems of she l l  theory, although the re
cent works on ana ly t ica l  mechanics do ind ica te  ways of extending these methods 
t o  the mechanics of a continuous medium. The development of the mechanics of 
s h e l l s  i n  t h i s  d i rec t ion  i s  unquestionably of i n t e re s t ,  but will require a cer
t a i n  amount of t i m e .  

Finally, a word on our method of i n t e rna l  reference t o  formulas t o  be 
found elsewhere i n  the  book, i n  the  l i t e r a t u r e  o r  i n  other  sources. 

We have adopted the  following method of indicat ing references. An entry 
of the  form (11, Sect.3) means a reference t o  the  content of Section 3 ,  Chap
t e r  11, while the  symbol (111, 11.5) means a reference t o  eq.(5) of Section 11, 
Chapter 111, and so on. 

The l i t e r a t u r e  references a re  divided in to  two groups. The first includes 
the  pr incipal  sources, which a re  l i s t e d  a t  the  end of  the book. References t o  
sources not included i n  t h i s  Bibliography, a r e  given as footnotes on the per
ta ining page. 

The Bibliography a l so  includes cer ta in  works t o  which the text does not 
re fer  bu t  which helped i n  formulating the  ideas  expressed i n  i t s  content. 

This Bibliography,of course, makes no claim a t  completeness, and the di
vis ion in to  two groups i s  qui te  arbi t rary.  

The author expresses his thanks t o  A.S.VolTmir, A.D.Kovalenko, and 
G.N.Savin f o r  checking the  manuscript and f o r  valuable comments, and a l so  t o  
A.Kh.Konstantinov and G.L.Komissarova of the  I n s t i t u t e  of Mechanics, UkrSSR 
Academy of Sciences, fo r  reading the manuscript, t o  2.I.Yasinchuk and L.A.Rud
neva who par t ic ipated i n  i t s  technical preparation, and t o  S.G.Shpakov who per
formed some of the computations. 

Kiev, September 1960 t o  January 1962 K .Kilt chevskiy 
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A solid,  bounded by two boundary surfaces and by a contour surface in te r 
sect ing the  boundary surfaces along the contour curves, i s  called a shell .  Be
tween the  boundary surfaces l i e s  the  basic  (o r  coordinate) surface, whose se
l ec t ion  i s  a rb i t r a ry  and i s  based on the  conditions of the  spec i f ic  problem. 
The object  of this select ion i s  t o  simplify the  system of equations of the the
ory of shel ls .  

The length of t he  segment of the normal t o  the  bas ic  surface included be
tween the  boundary surfaces of the  she l l  i s  called the  thickness of t he  shel l ,  
which will hereaf ter  be denoted by 2h. The thickness of a she l l  may be e i t h e r  
constant o r  variable. The locus of the  midpoints of the segments of t he  nor
m a l s  t ha t  define the thickness of the  she l l  will be a r b i t r a r i l y  termed the  mid
d l e  surface of the  shel l .  

A charac te r i s t ic  fea ture  o f  the she l l  i s  the  smallness of t h e  r a t i o  2h:a, 
where a i s  a cer ta in  parameter determining the  dimensions of the  shel l .  For 
example, for coverings, a i s  one of the  dimensions defining t h e  projection of 
t he  covering on a horizontal  plane. Sometimes one of the  pr incipal  r a d i i  of 
curvature of the middle surface i s  selected a s  t h e  parameter a. The geometri
ca l  charac te r i s t ics  of s h e l l s  will be discussed i n  greater  d e t a i l  i n  Chapter
111. 

Shel l s  are common elements of various machines and structures,  because of 
the  excellent strength charac te r i s t ics  of designs with thin-walled elements of 
the  she l l  type. 

This book w a s  wri t ten i n  a period o f  intense development of t he  s t a t i c s  
and dynamics of th in  shel ls .  Research i s  being pressed i n  various direct ions,  
and it would be d i f f i c u l t  today t o  specify any one group o f  works t h a t  could 
with complete j u s t i f i c a t i o n  be called the basis  of t he  theory. For this rea
son, the  contents of t h i s  book are t o  some extent a re f lec t ion  of the  narrow 
s c i e n t i f i c  i n t e r e s t s  of i t s  author. The choice of the problems touched on i n  
the  main pa r t  of t h e  book (Chapters 1 1 1 - I V )  has been determined by the  contents 
o f  the well-known monographs by S.A.Ambartsmyan, I.A.Birger, V.V.Bolotin, 
V.Z .Vlasov, A .S.Voltmir, A.L.Gol*denveyzer, Kh.M.Mushtart and K.Z .Galimv, /12
A.I.Lurfye, V.V.Novoehilov, and 0.D.Oniashvili. We have attempted here t o  con
s ider  and analyze those t rends of research i n t o  she l l  theory t h a t  have not been 
su f f i c i en t ly  covered by t h e  above-mentioned major works. It must be emphasized 
t h a t  complete attainment of t h i s  aim would take us  beyond the  scope of t he  
present volume, and we have thus had t o  confine ourselves t o  the  construction 
of separate fragments of theory which, i n  our opinion, a r e  a b a s i s  f o r  fur ther  
investigations.  

We have thought it expedient t o  concentrate a t ten t ion  on the  development 
of ana ly t ica l  methods of invest igat ion based, more par t icular ly ,  on the  theory 
of invar ian ts  of coordinate transformations and the  ana ly t ic  de f in i t i on  of t he  
basic  geometric operations performed on vector and tensor  f i e l d s  t h a t  def ine 



t h e  physical state of a shel l .  The working apparatus connected with the  theory 
of invar ian ts  i s  the  calculus of  tensors, together  with the  pr inciples  and var
ious propositions of c l a s s i ca l  ana ly t ica l  dynamics. We have of ten made use of 
a more popular method of approximate representation of functions, the  method of 
constructing approximation functions tha t  satisfy the  requirement of the  least-
square deviation from the  approximation function within the  region of the  ap
proximate representation required. 

This method of investigation, in our opinion, a l so  belongs t o  the amaly
t i c a l  mechanics of shel ls .  Here we depart  from the  c l a s s i ca l  concept of the 
f i e l d  of ana ly t ic  mechanics, bu t  t h i s  formal deviation i s  thoroughly ju s t i f i ed  
by the e s sen t i a l  nature of the  method, the  more so t h a t  it permits t o  obtain 
the  general equations o f  motion of a she l l  and i s  linked t o  one of the  funda
mental var ia t iona l  pr inciples  of mechanics, namely the  Gauss principle. 

To f a c i l i t a t e  the  reading of the  book, t he  main content i s  preceded by 
Chapters I and 11, which give i n  out l ine the  elements of  tensor analysis  and 
d i f f e r e n t i a l  geometry, ind ica te  the  elementary geometric propert ies  o f  shel ls ,  
and present t he  r e l a t ions  o f  t he  l i n e a r  and nonlinear theory of e l a s t i c i t y  t o  
which l a t e r  reference will be made. Some of these relat ions,  as mentioned i n  
the  Preface, will be used i n  the  next Volume of  this work. 

Most of the  subject matter in the  main Chapters ( 1 1 1 - V )  i s  connected w i t h  
the theory of s m a l l  displacements and deformations of shel ls ,  described by l i n 
ea r  d i f f e r e n t i a l  and in tegro-d i f fe ren t ia l  equations. I n  a number of cases, we 
consider problems of the nonlinear theory. 

ill  The problems of s h e l l  dynamics occupy the  cent ra l  posi t ion i n  the  book. 
In  Chapter I11 we consider the  l i t t l e - inves t iga ted  methods of reducing the 
three-dimensional problems of t he  dynamics of homogeneous and inhomogeneous 
(layered ) s h e l l s  t o  two-dimensional problems. We analyze the  boundary condi
t i ons  and i n i t i a l  conditions. 
equations f o r  defining the  two-dimensional problems of she l l  theory. 
we make no use of t h e  simplifying assumptions inherent i n  the  Kirchhoff-Love 

We compare the  various methods of s e t t i ng  up the  
Here a 

hypotheses. 

The refinements of the  equations of the  theory of she l l s ,  once considered 
by some s c i e n t i s t s  t o  be of purely theore t ica l  i n t e re s t ,  have now assumed pro
found significance i n  connection w i t h  the  study of dynamic processes rapidly 
proceeding in time. Quite meaningful in these cases i s  the  investigation of 
high-frequency osc i l la t ions ,  which a re  usual ly  damped more rapidly than those 
of low frequency. 

In  studying the b r i e f  dynamic processes caused by the  short-time act ion of 
forces, the  e f f ec t  of t h e  d i ss ipa t ion  o f  energy i s  not o f  decisive importance, 
and we must study a broader segment of the  frequency spectrum than i n  studying 
slowly proceeding processes::. 

-x- The concept of the  speed of a process i s  of course re la t ive .  The natural  
measure of time i n  this case, i n  our opinion, i s  the  time in t e rva l  required for 
t he  spread of dynamic disturbances over t h e  e n t i r e  region within the shell .  
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The refined d i f f e r e n t i a l  equations of the  she l l  theory es tab l i sh  systems 
of higher order than the  system of equations of the c l a s s i ca l  theory. In t h i s  
connection, there  arises again t h e  problem of the  formulation of the  boundary 
and i n i t i a l  conditions completing the  formulation of t h e  dynamic boundary prob
lems. These questions a re  discussed i n  Chapters I11 and IV. If we r e c a l l  t he  
h is tory  of the development of modern she l l  theory, we can c lear ly  apprehend 
the  fundamental d i f f i c u l t i e s  involved i n  the  generalized formulation of the  
boundary conditions i n  t h i s  f i e l d  of applied e l a s t i c i t y  theory. The author 
d i s t i n c t l y  depicts  these d i f f i c u l t i e s  and the  controversial  nature of a nunber 
of propositions advanced by him.  

Chapter IV considers various approximate methods of solving the  problems 
of s h e l l  mechanics - a l l  methods governed by a s ingle  common idea. Their es
sence res ides  in the  replacement of the  s h e l l  by an e l a s t i c  system approxi
mately equivalent t o  it i n  respect t o  cer ta in  general features. 

In  par t icular ,  we propose a new approximation method of solving the  non
linear problems of she l l  theory, closely resembling t h e  method of equivalent 
l inear iza t ion  known from nonlinear mechanics of systems with one degree of 
freedom. The perspective of this method i s  t o  some extent confirmed by the ex
ample f o r  the solution of the  problem of s t a b i l i t y  of a closed cyl indrical  
shel l ,  given i n  Chapter IV, Sect.6. 

W e  a l so  discuss  the  construction of a homogeneous she l l  approximately 
equivalent i n  number of layers .  This construction i s  based on the  approxima
t i o n  of  t he  Lagrange function of a layered she l l  by the Lagrange function of a 
homogeneous shell .  To r ea l i ze  t h i s  approximation, it w a s  necessary t o  se lec t  
a special  system of var iab les  which, i n  the  modern l i t e r a t u r e  on mechanics, /14
are  termed variable f ie lds .  

A preliminary subs t i tu t ion  of a homogeneous she l l  for a layered s h e l l  per
m i t s ,  a s  shown i n  Chapter IT,t o  develop a method of approximate determination 
of f i e l d s  of displacement, deformation, and s t r e s s  i n  layered shel ls .  

Further, the method of constructing the  best-square approximations i s  ap
pl icable  t o  the establishment of a new system of equations of motion of a 
s h e l l  element, modifying i n  t h i s  case a general pr inciple  of ana ly t ica l  dynam
ic s ,  namely the  DfAlembert-Lagrange principle.  Obviously, t h i s  involves the  
connection between the  method of l e a s t  squares and the pr inciple  of l e a s t  
constraint ,  s ta ted by Gauss, which possesses the  same degree of general i ty  as 
the  DTAlenibert-Lagrange principle.  The resu l tan t  system of equations has a 
number o f  propert ies  permitting i t s  use as a means of solving new problems of 
s h e l l  theory. 

The solution o f  t he  l i n e a r  problems of she l l  theory, and par t icu lar ly  the  
nonlinear problems, reduces i n  the  general case and a t  the  present l e v e l  of de
velopment t o  the  numerical solut ion of systems of l i n e a r  and nonlinear alge
b ra i c  equations. We have therefore  deemed it advisable t o  consider, i n  
Chapter I V ,  a method based on the  appl icat ion of  interpolat ion fomulas,making
it possible t o  reduce the  problem of the  motion of s h e l l  elements t o  the  solu
t i o n  o f  a f i n i t e  s y s t e m  of ordinary d i f f e r e n t i a l  equations, which are the 
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Euler-Lagrange equations f o r  the  corresponding var ia t iona l  problem. The selec
t i o n  of the  var ia t ion  principle,  permitting t o  set up t h e  equations of motion, 
depends on the  propert ies  of the  re la t ions  resu l t ing  from the  boundary condi
t i o n s  of t he  problem when applying the  method of reduction based on the  expan
sion i n  tensor  series of t he  required components of the displacement vector and 
the  stress tensor. I n  t h e  general case, these r e l a t ions  a re  kinematic and be
long t o  types t h a t  have not been studied in c l a s s i c  dynamics. I n  Chapter IV,  
t h e  question of t he  formulation of t he  in i t ia l  conditions i s  again invest i 
gated. 

The mentioned method makes it possible t o  lay the  foundation f o r  a numer
i c a l  solution of s h e l l  theory problems by the  use of computers. We term t h i s  
method the  discrete-continuous method, following the  terminology proposed by 
V.Z.Vlasov. 

The methods of solution o f  the boundary problems of she l l  theory, de
veloped i n  Chapter V, l ikewise have the  object  of laying the  foundation f o r  
programming the  numerical solution of the  boundary problems of s h e l l  theory. 
Here we indica te  systems of in tegro-d i f fe ren t ia l  equations t h a t  r e s u l t  from 
the  theorem of work and reciproci ty  i n  both i t s  conventional treatment and a s  
generalized by us  t o  the  case o f  a nonlinearly deformed anisotropic  medium. 
The generalization of  t h e  theorem of reciprocal  work i s  presented i n  Chapter 
11. I n  Chapter V a new method i s  described f o r  reducing the  three-dimensional 
problems of the  e l a s t i c i t y  theory t o  two-dimensional problems of t h e  she l l  
theory. This method permits us  t o  describe a f i e l d  of displacements within /1-5
a she l l  by systems of in tegro-d i f fe ren t ia l  equations or, i n  par t icular ,  of in
t e g r a l  equations with kernels  having peculiar properties,  which we have called 
frfocusingfti n  accordance with the  term proposed by K.Lantsosh+t. 

The in tegro-d i f fe ren t ia l  equations o f  t he  s h e l l  theory, and the  in t eg ra l  
equations with focusing kernels, a r e  undoubtedly of considerable theore t ica l  
and applied importance. By applying the  discrete-continuous method t o  systems 
of integro-differentLal  equations with focusing kernels, we approximately re
duce the  problems of she l l  dynamics t o  the  solution of r e l a t ive ly  simple sys
tems of l i n e a r  ordinary d i f f e r e n t i a l  equations or,  i n  more general cases, of 
nonlinear types. I n  problems of s t a t i c s ,  these systems degenerate t o  systems 
of algebraic equations . 

Thus, t he  solut ions of the boundary problems of she l l  s t a t i c s  and dynamics 
may be found i f  t h e  coeff ic ients  of these ordinary d i f f e r e n t i a l  equations or 
t he  ana ly t ica l  expressions f o r  the  kernels with focusing properties a re  known. 

I n  Chapter V we ind ica te  two methods of constructing these kernels. The 
first method i s  based on expansions of t h e  functions, permitting a construction 
of focusing kernels, i n  Legendre polynomials. The invest igat ion of these ex
pansions i s  connected with problems only a s tep  removed from t h e  c l a s s i ca l  

* Cf.K.Lantsosh, P rac t i ca l  Methods of Applied Analysis. Physical and Mathe
matical  Publishing House, 1961. , (Fizmatgiz) 
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problem of moinentSi5. The first method allows us t o  f ind kernels  with stronger 
focusing properties than does the  second method. The second method i s  simpler 
than t h e  f i r s t  and does not  require complicated a d d i t i o n d  mathematical inves
t igat ions,  bu t  leads t o  kernels with weakened focusing properties. I n  t h e  
second volume of t h i s  work, we s h a l l  ind ica te  spec i f ic  ana ly t ic  expressions 
f o r  focusing kernels f o r  special  types of shel ls  and sha l l  present Tables f o r  
finding the numerical values f o r  the  coef f ic ien ts  of the  approximate differen
t i a l  equations of s h e l l  dynamics and the  algebraic  equations of she l l  s t a t i c s ,  
t ha t  follow from the  in tegro-d i f fe ren t ia l  equations with focusing kernels. At 
the same time, we sha l l  continue the  invest igat ion of the ana ly t ic  propert ies  
of the  in tegro-d i f fe ren t ia l  equations of s h e l l  theory with focusing kernels. 
These invest igat ions w i l l  allow us  t o  f ind standard programs f o r  t he  computa
t ion  of  s h e l l s  of a rb i t r a ry  form on modern computers. 

Such i s  the plan f o r  fu ture  investigations,  with the  object  of estab
l i sh ing  a general and ef fec t ive  method f o r  solving problems of s h e l l  s t a t i c s  
and dynamics, i n  both l i n e a r  and nonlinear formulations. 

3s Cf.N.I.Akhiyeeer, The Classical  Problem of Moments. Physical and Mathe
matical Publishing House, 1961. 



CHAPTER I /16 
E;LEME;C\rTSOF TENSOR ANALYSIS AND THEIR APPLICATION 

TO THE DIFFERATTIAL GEDXE3'RY OF SHFLLS 

Section 1,General Description of the  Applications o f  Tensor 
Analysis i n  Shel l  Theo_ry 

Tensor analysis  i s  a modern mathematical apparatus permitting expression, 
i n  the  most general ana ly t ica l  form, of the  fundamental geometric operations 
performed on the  quant i t ies  encountered i n  the  invest igat ion of various prob
lems of geometry and physics. Among these operations we may note elementary 
operations, f o r  instance the  measu-rement of  dis tances  between points of space, 
or measurement of angles between directed segments, and more complex opera
t ions,  t o  which reduces the  mutual comparison of geometric and physical ob
jec ts ,  of a given system of  nunibers or system of functions of curvi l inear  coor
d ina tes  of points  i n  space. 

Par t icu lar ly  important i s  the  problem of constructing quant i t ies  indepen
dent of the choice o f  the  coordinate system. These quant i t ies  a re  termed in
var ian ts  of coordinate transformations. Tensor quan t i t i e s  a re  the  base f o r  the  
construction of invariants.  The sca la rs  and vectors, which we know frox ele
mentary geometry and mechanics, a r e  special  cases o f  tensor quantit ies.  

Most invar ian ts  have a de f in i t e  geometric or physical meaning. Invariants 
a r e  the bas i s  f o r  the general ana ly t ica l  formulations of the  l a w s  of  physics, 
especial ly  those of mechanics. The applications of tensor analysis t o  the 
geometry o f  surfaces a re  numerous, since here tensor  analysis  allows us t o  find 
expressions of geometric theorems i n  a simple and ye t  general form. 

The kinematics and k ine t i c s  of she l l s  i s  precisely the branch of mechanics 
t h a t  i s  in t e rna l ly  linked t o  the  geometry of surfaces. The formulation of  the 
boundary problems of she l l  theory requires the introduction of curvi l inear  co
ordinate systems defining the  posi t ion of the points  of the  shell .  

To s e t  up the  kinematic and k ine t i c  equations of s h e l l  theory without /17 
recourse t o  the methods of  tensor analysis  i s  a cumbersome and complicated oper
ation, and - what i s  very important - it sometimes involves losses  o f  various 
terms of the equations. Errors of t h i s  kind a re  most frequently encountered i n  
attempts t o  s e t  up the  equations of she l l  theory on the  b a s i s  of  elementary 
"visualized" concepts. 

The apparatus of tensor analysis,  as already remarked, was developed f o r  
t he  very purpose o f  solving the  problems of geometry and mechanics i n  curvi
l i n e a r  coordinate systems. This apparatus i s  most su i tab le  for solving various 
problems of she l l  mechanics. A l l  the operations necessary f o r  s e t t i ng  up the  
kinematic and k ine t i c  equations of she l l  theory receive, i n  the framework of  

6 




tensor  analysis,  a rigorous ana ly t i c  in te rpre ta t ion  tha t  makes it unnecessary 
t o  appeal t o  visualized ttobvioustr ideas. 

While tensor  analysis  does allow u s  t o  set up the equations of she l l  the
ory, it does not, of course, eliminate the  d i f f i c u l t i e s  of  solving the  corres
ponding boundary problems. However, it p e n i t s  u s  t o  mark new methods of solv
ing  the  dynamic boundary problems, based, f o r  instance, on introduction of the  
functions of k ine t i c  s t r e s ses  (Bibl.?), 

Section 2. 	 Systems of Curvilinear Coordinates. Metrics of Space. 
The Symbol f o r  Summation. 

In  passing t o  a discussion of the mathematical pr inciples  of the  theory of 
shel ls ,  we assume t h a t  t h e  reader i s  famil iar  with the ru les  of operation of 
vector algebra and t h e  elements of d i f f e r e n t i a l  geometry. 

Shel l  theory i s  based on the  application of various curvi l inear  coordinate 
systems defining the posi t ion of the  points  of the shell .  We sha l l  f i r s t  con
s ider  the general propert ies  of an a rb i t ra ry  coordinate system i n  three-
dimensional space, and s h a l l  then i l l u s t r a t e  these properties by examples from 
she l l  theory. 

A system of independent parameters, uniquely determining the  posit ion of 
the  points i n  space, i s  cal led a system of curvi l inear  coordinates. We sha l l  
denote them by xi. In  three-dimensional space the  number of a coordinate (in
dex) may be 1, 2, 3. On a ce r t a in  surface, e.g. i n  two-dimensional space, the  
index i takes the  values 1 and 2. 

- + +
Let us  se lec t  a fixed point 0 i n  space, and draw the  radius vector OM = r 

' t o  the point M i n  space. Since the  posit ion of point PI i s  determined by the 
coordinates xi (i= l ,2,3), the  radius vector i s  a function of xi : 

We sha l l  assume t h a t  F(xi ) i s  a single-valued continuous function, d i f - /18 
fe ren t iab le  a t  least twice w i t h  respect t o  any argument xi. If two coordi
nates  xi out of the  three are fixed, then eq.(2,1) can be regarded as the  equa
t i o n  o f  a cer ta in  curve. This curve i s  called a coordinate l ine .  Three coor
dinate  l i n e s  pass through t&e point M. Consider the  two points  M(xi) and 
W(xi + dxi  ). The vector MplT i s  defined as follows: 

where C i s  the  sign o f  summation. The der ivat ives  
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- = e ,  (i- 1, 2, 3)
axi (2.3) 
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are vectors directed along tangents t o  the  coordinate l ines .  The vectors  e, 
form the  l o c a l  coordinGe base a t  the  point M. Equation (2.2) defines  the  ex
pansion of the  vector d r  on the axes of t he  l o c a l  coordinate base. The index i 
i n  eq.(2.2) i s  called a dummy index, since it takes no d e f i n i t e  value but  runs 
through a l l  values from 1 t o  3 .  a u a t i o n  (2.2) obviously remains unchanged i f  
t he  dummy index i i s  replaced by any other  let ter.  We sha l l  frequently make 
use, hereafter,  of t h i s  r i gh t  t o  change the  dummy indices. 

L e t  u s  f ind t h e  dis tance NiY. We have 

o r  

-# 

where d s  = I I W I  ; the  coef f ic ien ts  g, a r e  expressed by 

Equation (2.4), defining d 8 ,  i s  called the  fundamental quadratic form of  
the  quant i t ies  dx', and t h e  coeff ic ients  g1 are called the  coef f ic ien ts  of  the  
fundamental quadratic form. Below, we w i l l  give a d i f fe ren t  term f o r  the  set 
of quant i t ies  g, . 

The determinant /19 

(2.6a) 
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i s  called the  fundamental determinant, 

It follows from eq.(2.5) and the  theory of determinants t h a t  the  funda
mental determinant i s  equal t o  t h e  square of the  volume V of t h e  parallelepiped 
constructed on the  vectors  gi : 

Here V i s  usually taken as a posi t ive quantity. W e  sha l l  re turn later t o  
the  question of i t s  properties. 

The set of quant i t ies  g,, permits u s  t o  determine the  dis tance between two 
points. It i s  easy t o  show t h a t  the  s e t  of these quant i t ies  allows u s  t o  f ind 
the  angle between t h e  d i rec t ions  of the  two vectors $r and rr. By making use 
of expansions of the  type of eq.(2.2) of t h e  vectors d'r and 6'r and the  proper
t i es  of a sca la r  product, we obtain 

Thus the  system of functions of gieJ def ines  t h e  metric of space, e.g. t he  
method of measuring, in a given cumi l lnear  coordinate s y s t e m ,  the  dis tances  
between i n f i n i t e l y  near points  and the  angles between the d i rec t ions  of two 
vectors. 

EQuations (2.2), (2.4), and (2.7) may be put i n to  a simpler form by making 
use of the  a rb i t r a ry  sumation convention proposed by A. Einstein. 

3 
Hereafter, sums of the  form a,b' w i l l  conventionally be wri t ten simply

i=l 

as a,bi , omitting the  sign t. I n  t h i s  case, of course, it will be necessary 

1= 
t o  indicate  it spec i f i ca l ly  whenever expressions of the  form a,b* a re  not sums 
bu t  monomials. If  we use t h e  simplified notation f o r  summation, then, f o r  in
stance, eq.(2,4) takes  t h e  following form: 

The abbreviated notat ion f o r  summation i s  a l so  applicable t o  multiple sum
mation. 
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Another abbreviated notation w i l l  be introduced here. We sha l l  denote /20 
the  operation of d i f fe ren t ia t ion  with respect t o  the  coordinate x* by the  
symbol a, : 

Thus, 

(2.10) 


Section 3 .  Metrics i n  Shel ls  

A curvi l inear  system of coordinates i n  a she l l  involves the  preliminary 
introduction o f  an undeformed base surface on which a network of coordinate 
l i n e s  2 and x? i s  drawn. Plost often the base surface i s  taken t o  coincide 
with the middle surface of the undeformed shell .  We put 

where the  are orthonormals t o  the undeformed bas ic  surface. Thus the  n o d s  
t o  t h e  undeformed basic  surface of the she l l  form a system of  coordinate l i n e s  
along which the coordinate 2 varies. The system of coordinates xi i s  the  La
grangian system defining the  posit ion of the points  of the deformable medium 
const i tut ing the  shell .  Under deformations of the  shel l ,  the  coordinates xi o f  
a material  element of the she l l  do not vary, but the  coordinate l i n e s  2 devi
a t e  from the norma,ls t o  the  deformed basic  surface. Let To (2,  2 ) be the ra
d ius  vector of  a point of t h e  bas ic  surface o f  the  undeformed shell .  Then t h e  
radius vector of an a rb i t r a ry  point of the she l l  will be expressed by 

Tne vectors of the  l o c a l  coordinate base w i l l  be expressed by 

1c 




- -  

If t h e  coordinate l i n e s  on the bas ic  surface are taken t o  coincide with 
its l i n e s o f  curvature, as i s  usually,done i n  
Rodrigues formula+, we  f ind 

+ 

din = kidiro. 

where'the denote the principal curvatures of the basic surface: 

and the & are the  principal radii of curvature. Thus, -. 
e, =(1 - k$) airo (i =1, 2). (3.5 1 

Hence the coefficients of the fundamental quadratic fords: are: 

(3.6a) 

(3.6b) 

),where t h e  (ai are the coeff ic ients  of the  basic  quadratic form for 2 = 0, 
i.e..% on the basic surface. 

Equations (3.6a) and (3.6b) allow us, as we s h a l l  show l a t e r ,  t o  find the 
metrics fo r  EL shel l  with an a r b i t r a r i l y  assigned coordinate net  on i t s  unde
formed basi.c surface.. 

Section 4,  	Sk1l-sof  Rexolutionc Special Cases of Shells of 
Revolution, Arbitrary Cylindrical Shells. 

Cansider a. she21 51which the  basic  surface i s  a surface of revolution. If 
the ax is  OZ of a rectangular Cartesian coordinate system i s  superposed on the  
ax is  of revolution of  the bas ic  surface, then the  vector equation of the basic  
mrfac;e may b e  writ ten i n  the following form: 

x- See, f o r  Instance, W.Blaschke, Different ia l  Geometry. ONTI, 1936 
V "  

7-r H e r e  and hereafter t h e  exponents are writ ten i n  parentheses. we will de
vtate from tEs rule in cases- where it could not cause misunderstanding o f  the 
notation, 



-+ 

ro(xl ,  x2)  = F ( x l )  [i'cos cp (9)+;sin cp ( x 2 ) ] + k z ( x 1 ) .  (4.1 1 
where the  .equations 

determine the  fohn of the meridional section of the  she l l ,  and the  angle CD i s  a 
function of the second coordinate 2 defining the  posi t ion of a point on a c i r 
c l e  of la t i tude .  Thus, 

dlro = F'(x') [i cos cp (9)+ j sin cp (xz) ]  + kz ' (xI ) ,  
f f 

d2r0 = F ( x l )  [- i sin cp (9)+ j cos cp (xz)] cp'(x2), 

where the  prime denotes d i f f e ren t i a t ion  with respect t o  the corresponding a r - e  
gument . 

Since meridional sect ions and c i r c l e s  of l a t i t u d e  a r e  l i n e s  of curvature 
on a surface of revolution, l e t  u s  make use of eqs0(3.6a). We obtain 

The r a d i i  of curvature Rl and R, a re  determined from eqs.(4.2). Let us 
consider cer ta in  spec ia l  cases. 

1, The Circular Cylindrical  Shel l-

Equations (4.2) here taKe the  form: 

x = a =const, 2 = z(x ' ) .  

where a i s  the radius of the cylinder and xl i s  the  coordinate defining the po
s i t i o n  of a point on the  generatr ix  o f  the  bas ic  surface. 

Consequently, k, = 0, kB = -L 
a 

It follows from eqs.(4.4a) and (4,kb) t h a t  

61, = z'(2)( x ' ) ;  g22 = (a -x3) (2)cp'(2) (9). 
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~ then 

2. Circular-Conical Shell  

Let the basic surface of the s h e l l  be of the form of a c i rcular  truncated 
cone. L e t  2 be the distance of a point of the basic surface of the shell ,  
measured along the generatrix, t o  the base of greater radius. Let rl and r, be 
the r ad i i  of the bases of the truncated cone. Assume tha t  rl > r,. L e t  H be 
the a l t i tude  of the cone, and y the angle between the generatrix and the axis 
of  revolution. Let the axes OX and OY lie in t h e  plane of the base of radius 
rl. Then eqs.(4.2) take the form: 

From eqs.(lb.4a) and (4.4b), remembering tha t  kl = 0, we find 

(4.7) 


where 

3. 	The Shell  with the Base‘ Area i n  the Form of a 
Hyperboloid of Revolution 

Consider a she l l  whose base area i s  the hyperboloid formed by the revolu
t ion  of the hyperbola 

about the axis OZ. Equations (4.2) take the form of 
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Then, 

The quant i t ies  gll, e2 a re  defined 3 ~ yeqs.(4,@) and (4,Lb). 

Consider, f i n a l l y  a she l l  with a cyl indrical  base area and an arbitrary 
di rec t r ix .  

L e t  the  coordinate 2 define the dis tance of a point of t h e  bas ic  surface, 
measured along the generatrix, from one of t he  face sections, and the  coordi
nate  2 be equal t o  the  length of the a r c  of a section o f  t he  bas ic  "?ace by 
a plane normal t o  the  generatrix, measured from one -of the  generakrices, Then 
the  element of the  a rc  of  the basic  surfaee will be 

-
Consequently, 

and 

Section 5. 	 Scalars, Vectors and Their Contravariant and Covariant 
Components. The Reciprocal Coordinate Base 

Without dwelling on the  propert ies  and examples of  sca la r  and vector quan
t i t i es ,  familiar from physics and geometry, we will proceed t o  the ip  arzalytical 
characterization. 

We will apply the term absolute sca l a r  t o  a quantity, determined by a /24
function of t he  coordinates o f t h e  points  in space, whose value a t  a f h e d  
point i n  space does not depend on t h e  choice o f t h e  coordinate system, 
fo l lows  we will a lso  term such a quantity an invariant  of coordinate transfor-

I n  what 

mations. The space in which a function def in ing  an absolute scalar 5s assigned 



i s  called a sca la r  f ie ld .  I n  addition t o  absolute sca la rs  there  a re  a l so  sca
lar  quant i t ies  t h a t  do depend on the  choice of the  coordinate s y s t e m .  The pro
ject ions of directed segments on the coordinate axes are examples of such quan
t i t i e s .  When the  term "scalar" i s  hereaf ter  used, it will refer only t o  abso- , 

l u t e  scalars. 

Consider now a cer ta in  vector z, referred t o  the  loca l  coordinate 2ase si 
of a curvi l inear  coordinate s y s t e m .  A s  i s  generally known, the  vector a may be 
represented by the  expansion (B ib l .  '7 ) 

-. 
n =e#. 

The quant i t ies  a' are called the  contravariant components of t he  vector 2. The 
meaning of this term will be explained below. In  the  general case the  quanti
t i e s  ai a re  functions of the  coordinates of the  points  i n  space. The space i n  
which the  functions ai are assigned i s  called the  f i e l d  of the  vector 3. 

To es tab l i sh  the  analyt ic  def in i t ion  of the vector 2, consider the  point 
transformation of t h e  coordinates xi and the  change i n  the  quant i t ies  a' asso
ciated w i t h  t h i s  transformation. Let the  formulas of t r ans i t i on  from the  coor
d ina tes  xi t o  the  new coordinates y' and from t h e  new coordinates t o  the  old be 
of the  following form: 

Then the radius vector of an a rb i t r a ry  point M ( y '  ) may be regarded as a 
complex function o f  the  xi . B y  v i r tue  of eq. (2.3 ) we obtain 

+ 
where the  etJ  a re  the  vectors  of  t he  new coordinate base. Equations (5.3a) are 
the  formulas of transformation of the  coordinate base. The formulas f o r  the  j25
inverse transformation can be s imilar ly  found: 

15 




(5.4) 


where 

Rpa t ions  (5.5) a re  the formulas of transformation of the quan t i t i e s  a*. 
I n  exactly the  same way we may f ind the formulas of the  transformation inverse 
t o  eq.(5.5). Comparing the  r e l a t ions  (5.3a) and (5.5), we conclude t h a t  t h e  
formulas of transformation of the quan t i t i e s  ai are, inverse i n  sense t o  the 
fomulas  f o r  t he  transformation of the  vectors  of the coordinate base. Hence 
the term frcontravariantft.  

Vectors can a l so  be defined by a system of "generalized projections" onto 
the axes of the l o c a l  coordinate base. Consider t h e  three quan t i t i e s  

+ *  

a, =a.e i .  

These quant i t ies ,  likewise, ana ly t i ca l ly  determine the vector 2. To con
vince ourselves t h a t  this i s  so, it i s  su f f i c i en t  t o  exprezs, i n  terms of the  
quan t i t i e s  +, the  contravariant components of the  vector a. 

By v i r tue  of eq~~(5.1) and (2.5), we obtain* 

* *  

1 ra.=e..e k ak=g.  I &aR (i, k = l ,  2, 3). (5.7) 

Considering these equations as a system of ' l i n e a r  algebraic equations i n  
ak,we f ind t h a t  

' ak---g ikai (i, I< = 1, 2, 3). 
(5.8) 

where 

* Here and hereaf ter  we make use of the r i g h t  t o  denote the  dummy indexes by 
any desired l e t t e r .  
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In orthogonal systems of coordinates: 

After introduction of the quan t i t i e s  ,$k, eq.(5.1) assumes the  form 

a =e,gika,. 

We now introduce the  notat ion 

(5.10) 


Then eq.(a) takes  the  form 

- . 
cz=&a,. 

(5.11) 

The vectors  zi form a coordinate base reciprocal  t o  the  o r ig ina l  basis.  

Let u s  consider a few relat ions,  necessary f o r  the  fu r the r  discussion, be
tween the quan t i t i e s  introduced here. Compare the  systems o f  equations (5.7)
and (5.8). We have 

Since eqs. (b,) a r e  va l id  a t  a r b i t r a r y  values of t he  quan t i t i e s  ak (k, j = 1,2,3), 
t he  following i d e n t i t i e s  hold: 

g'fig, ak. 5 1 (k = j ) ,4 0 (k#I ) .  (5.12) 

where 6k is  the  Kronecker symbol. Further, from eqs.(5.10), (2.5), and (5.12), 
we f ind  

(5.13) 


FQuation (5.13) permits us t o  c a l l  the  quan t i t i e s  g" coef f ic ien ts  of the  
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fundamental quadratic form on a reciprocal coordinate base. rn  exactly the  
same way we obtain 

Obviously, gf, ==gi: .. 

Equations(5.14) permit u s  t o  f ind simple expressions of t he  vectors of a 
reciprocal coordinate base. We obtain 

where X i s  the  sign of the  vector product. 

The indices  i, j, k form a cycl ic  permutation o f  t h e  numbers 1, 2, 3. 

Similarly, 

ei = V ( d  E'). 
(5.1%) 

The der ivat ion of eqs.(5.15a) and (5.1%) from eqs.(5.l&} i s  l e f t  t o  t h e m  
reader. 

+. We return now t o  eq. (5.1). On sca la r  mult ipl icat ion of this equation by 
eJ and bearing eq.(5.1&) in mind, we obtain 

(5.16) 


Consider the  formulas of transformation of the  quan t i t i e s  a,. OB the  
bas i s  of eqs.(5.3a) and (5.6) we obtain 

(5.17) 

The formulas of the  transformation inverse t o  eqs. (5.17) may be s imilar ly  
found. These formull-as allow u s  t o  c a l l  the quant i t ies  a, the  covariant compon
en t s  of the vector a, since they coincide with the formulas of transformation 
of the  coonlinate vectors. 
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Conclusions 

A sca la r  i s  a geometrical o r  physical quantity t h a t  i s  determined by a 
s ingle  function of a point i n  space and does not change i ts  value a t  a fixed 
point under transformation of coordinates. 

A vector i s  a geometrical o r  physical quant i ty  determined by a s y s t e m  of 
th ree  functions according t o  eqs.(5.l) and (5.11). These functions obey the  
transformation formulas (5.5) and (5.17). A charac te r i s t ic  feature  of these 
formulas i s  t h e i r  l i n e a r i t y  and homogeneity r e l a t ive  t o  t he  coeff ic ients  of 
.transformation (eq,.5,2a) : 

.
a?=-. 

ay j  
' a x i  

The transformation formulas corresponding t o  
demonstrated, a re  l i n e a r  and homogeneous r e l a t ive  
transf orma.tiou;t 

(5.18) 

eqs.(5,2b), as i s  readi ly  
t o  the  coef f ic ien ts  of the  

The transformation formulas are also homogeneous with respect t o  the  vec
t o r  components. For this reason, a vector equal t o  zero i n  one s y s t e m  o f  coor
d ina tes  i s  equal t o  zero i n  a l l  coordinate systems. 

I n  concluding t h i s  Section, l e t  us  consider the  projections of a vector /28 
onto the  axes of the  l o c a l  coordinate base. These projections a re  sometimes 
called "physical components of a vector" (Bibl.8). 

4 

Denoting the  modulus of t he  vector e, by e,, we have 

I n  orthogonal coordinate s y s t e m s :  

n 
.,-I 
. =0.'lfG (5.21) 

(do not s u m  over i 4 )  

~ 

-:-The expressions f o r  the  transformation coef f ic ien ts  adopted here are inverse 
t o  those used by us i n  an earlier book (Bibl.7). 
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Section 6. 	 Tensors of Various&& and St-ructure. The Metric 
Tensor of the Shel l_ -

The concept of the tensor  i s  a na tura l  general izat ion of the  concepts of 
sca l a r  and vector discussed above. The b a s i s  of this generalization i s  given 
by the  formulas f o r  transformation of vector components, eq~~(5.5) and (5.17).
To f ind the d i r ec t ion  of the  generalizations,  l e t  u s  consider the  formulas of 
bransfomation of the quan t i t i e s  gik, g’” and g!; . On t he  b a s i s  of the  def i 
n i t ions  of these quan t i t i e s  and of the  transformation fonrmlas f o r  t he  vectors  
of the pr incipal  and reciprocal  coordinate bases, we have 

or ,  f inal ly ,  

Similarly, 
g l i k  = ai ak uj!. 

J 1s ’ 

A comparison of e q ~ ~ ( 6 . 1 )and (6.2) with e q ~ ~ ( 5 . 5 )and (5.17) l eads  t o  the 
wanted generalization. 

A comparison of eqs.(6.1) and (6.2) with the  vector component transforma
t i o n  f o d a s  (5.5) and (5.17) and A t h - t h e  propert ies  of sca la rs  permits the 
inclusion of scalars ,  vectors, and of the quan t i t i e s  g ik ,  g*k-, gf; among the 
tensor quant i t ies  (tensors);;-. 

The s t ruc ture  of the r e l a t ions  (6.1) and (6.2) shows t h a t  we must d i s t i n 
guish tensors w i t h  covariant, contravAriant, and mixed components. The d i f f e r 
ence between these components i s  t h a t  t he  formulas of t r ans i t i on  from the old 
covariant components t o  the new contain on ly  the  coef f ic ien ts  S i ,  the f o m a s  
of t r ans i t i on  from the old contravariant components t o  the new contain o n l y  the  
coef f ic ien ts  ai, while the  formulas of t r ans i t i on  from the  old mixed compon- /29 
en t s  t o  the new contain the  transformation coef f ic ien ts  cy: and 8: . 

Further comparison of eqs.(6.1) and (6.2) with the  r e l a t ions  (5.5) and 
(5.17) permits introduction of the  concept of the  rank of a tensor. The rank of 
a tensor i s  equal to the dimensionality of the  right-hand s ides  of the trans
formational equations fo r  i t s  components r e l a t i v e  t o  the coef f ic ien ts  of trans
formation . 
x- The term t*tensorlt apparently originated i n  connection wi th  the f ac t  t h a t  the 
s t r e s ses  in the neighborhood of a cer ta in  point of a continuous medium a r e  com
ponents of the s t r e s s  tensor. It i s  connected with the Latin word tendere, t o  
pull, t o  stretch.  
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The number of components of a tensor  depends OF i t s  rank. The number N of 
components of a tensor of rank n i s  expressed by t h e  formula 

N =3*. 

Thus sca l a r s  a r e  tensors  of zero rank, vectors  a re  tensors  of f i r s t  rank, 
and the  quan t i t i e s  gik, g ik ,  &; a re  components of tensors  of second rank. Ten
sors  possessing the  components &k, g 1 k  and gfi a r e  c a e d  metric, since they 
detelrnine the  measurement of dis tances  between points  of space and the measure
ment of angles between d i rec ted  segments, i.e., t he  m e t r i c  of space. 

Generalizing eqs.(5.5), (5.17), (6.1) and (6.2), we s e t  up a transforma
t i o n  forrrmla f o r  the  components of a tensor  of a rb i t r a ry  s t ruc ture  and rank. 
These formulas are of the  following form: 

We advise the  r"eader t o  s e t  up the formula of the transformation inverse 
t o  eq.(6.3), as an exercise. 

E p a t i o n s  (6.3) express the  fundamental property of tensor  components, the 
law of t h e i r  transformation on passage from one coordinate system t o  another. 
This l a w  i s  the  same f o r  all  tensors, regardless of t h e i r  geometrical meaning 
o r  physical nature. For t h i s  reason, t o  prove t h a t  any quant i ty  has tensor 
properties,  it i s  necessary and su f f i c i en t  t o  prove t h a t  the  transformation for
mulas (6-3) a re  sa t i s f ied .  It follows from eqs.(6.3), in part icular ,  t h a t  a 
tensor  with components equal t o  zero i n  a cer ta in  system of coordinates will 
have components equal t o  zero i n  a l l  systems of coordinates. In general, every 
tensor equation t h a t  i s  va l id  i n  one coordinate system w i l l  be sa t i s f i ed  i n  a l l  
o ther  systems, i.e., such an equation w i l l  be invariant  under transformation of 
coordinates. 

If the  components of a tensor i n  one system of coordinates a re  known, then 
e q ~ ~ ( 6 . 3 )will permit u s  t o  f ind i t s  components i n  any o ther  system. In t h i s  
case, the formulas of coordinate transformation (5.2a) and (5.2b) o r  the coef
f i c i e n t s  of transformation CY^ and f3: mus t  be assigned. 

Thus, fo r  example, we found the  expressions (3.6a) and (3.6b) f o r  the com
ponents of the  metric tensor  i n  the  she l l ,  under the  assumption t h a t  the  coor
d ina te  l i n e s  on the  base surface coincide with i t s  l i n e s  of curvature. These 
expressions permit a determination of the  components of the metric tensor i n  /30 
an a rb i t r a ry  system of coordinates of the  bas ic  surface. Let the  formulas of 
coordinate transformation be of the following form: 

x ~ = s i ( y i )  (i, i=1 ,  2), 
x3 =y3. 

Then, from eqsO(3.6a), (3.6b) and (6.l), we obtain 
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T . 4 .  

I n  exactly the  same way we could ind ica te  the  formulas o f  transformation 
of the  components of t he  metric tensor, corresponding t o  an en t i r e ly  arbitrary 
choice of the system o f  coordinates i n  the  shell .  However, we will not present 
them here . 
Section 7. Operations of Tensor Algebra 

Tensor algebra considers only those operations on tensors which r e % l t  
again i n  a tensor. It goes without saying t h a t  these operations do not include 
operations connected with d i f fe ren t ia t ion  or integration. 

1. Addition 

The operation of addition can be performed only on tensors o f  the same 
rank and structure.  

The s w  of tensors i s  the  tensor determined by components equal t o  the  
sums of the  components of t he  tensors being added: 

Indeed, i f  the  quan t i t i e s  A!: j :,Bt'f j : Ct'f j : are tensor components, i.e., i f  
they obey the  transformation formulas f6.3), then, obviously, the  quant i t ies  
i k * *  a l s o  obey the  transformation formulas (6.3). This demonstrates t h a t  the  

operations defined by eq. (7.1) belong t o  tensor  algebra. 

2. Multiplication 

The operation of multiplication ma7 be applied t o  tensors of arbitrary 
rank and structure.  

The product of tensors i s  the  tensor with components equal t o  the  prod- /31 
u c t s  of t h e  components of the  tensors being multiplied. The rank of the product 
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equals the  sum of t h e  ranlts of  t he  factors ,  For example: 

If eqs.(6,3) are sa t i s f i ed  for* t h e  quan t i t i e s  A l k ,  BJ ,..., then it i s  ob
vious t h a t  they w i l l  a lso  be satisfied f o r  the  quan t i t i e s  T!! J :. This demon
strates t h a t  t h e  operations defined by the  re la t ion  (7.2) belong t o  the  opera

-t i ons  of tensor  algebra. 

An example of  t h e  application of tensor mult ipl icat ion i s  the  construction 
of elementary, so-called mult ipl icat ive tensors. Assume, fo r  instance, t h a t  we 
have assigned t h e  vectors  at9 bl ,  c,'.?. The products of these quarhi t ies  a re  
the  components of the  mixed mult ipl icat ive tensor  of t h i rd  rank: 

..k--(L'W C , .  (7.3 1Tij. 

3. Contraction 

The operation of contraction can b e  performed on ly  on mixed tensors. 

To perform t h i s  operation on the.mixed tensor  T!tj :  we s e t  up the quanti
t i e s  

\4e sha l l  prove t h a t  t he  quant i t ies  Tf::* a r e  components of a tensor having 
a rank two u n i t s  lower than the  rank of t h e  or ig ina l  tensor, T t t  j . 

Consider the  transformation formula (6.3). Put i n  t h i s  formula k = j. In  
the  right-hand side of t h e  equation, the sum 

will be eliminated. Thus, we obtain 

Conseqcently, t he  operation of  contraction leads  t o  a tensor of rank two units 
lower than the rank of the  or ig ina l  tensor. 

-% Here and hereaf ter  the set of components of a tensor is, f o r  brevity,  itself 
called a tensor. 
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Ekample. Consider the  mixed mult ipl icat ive tensor  ai$. By performing 
the  oper2tion zf contraction on it, we obtain the  scalar-scalar product of t h e  
vectors  a and b: 

4. ttF&ising" and "Lowering" of Indices 

We have already encountered special  cases of this operation in discussing 
the re la t ions  (5.7) and (5.8). Let us  extend it t o  tensors  of any rank and 
s t ruc ture. 

We s h a l l  first show t h a t  an a rb i t r a ry  tensor  can be represented as the sum 
of  mult ipl icat ive tensors. It i s  su f f i c i en t  t o  demonstrate this i n  any spe
c i a l l y  selected coordinate system. Consider, t o  be def in i te ,  the  third-rank 
tensor  T i j o .  Let u s  set up, corresponding t o  each component of this tensor, a

.k 

[i dkl 

system of three vectors  apbqc,. 

Let u s  s e l ec t  the vectors of this system, f o r  instance, as follows: 

(IP=a p k ,  0'1 = a? , cr ===6; . 

Then the tensor  T:!; may be represented by the sum 

Bearing eq.(5.7) i n  mind, l e t  us  consider the equation 

Thus, 

(7.7) 

We have "lowered" the  first contravariant index, by converting it in to  a 
covariant index. A covariant index may s imi la r ly  be "raised" 

Consequently, any system of tensor components may be determined i n  a space 
with a given metric tensor, i f  a system of components of any s t ruc ture  i s  
kn0Wl-I. 
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I 
I We note in conclusion t h a t  t he  representation (b) of an a rb i t r a ry  tensor 

by a sum of mult ipl icat ive tensors  has a number of applications. For example, 
t h i s  representation permits us d i r e c t l y  t o  f ind the  '?physical components" of an 
a rb i t r a ry  tensor by making use of eqs.(5.20) and (5.21). For this it i s  suffi-

P q 4
c ien t  t o  subs t i tu te  f o r  the  components of the  vectors a*bJ4 t h e i r  projections 
onto the  axes of t he  l o c a l  coordinate basis.  

5. Permutation of Indices. Symmetrization and Alternation /33 

The interchange of any p a i r  of indices  i n  the  components of t he  tensor 
T t T j  transforms this tensor  back i n t o  a tensor. If, on interchange of a p a i r  
of indices, t h e  tensor  remains unchanged, it i s  called symmetric with respect 
t o  this p a i r  of indices. For example, on sa t i s fy ing  the  condition 

(7.9) 

t he  tensor  T t l j  i s  called symmetric with respect t o  the  indices  k and j. If, 
on interchange of a p a i r  of indices, t h e  components of t he  tensor change t h e i r  
signs, then the  tensor  i s  called antisymmetric with respect t o  this p a i r  of in
dices.  For example, on sa t i s fy ing  the condition 

the  tensor TtT; i s  antisymmetric with respect t o  the indices  k and j. 

Making use of  the  transformation f o m l a s  (6 .3) ,  it i s  easy t o  show tha t  
t he  propert ies  of symmetry and antisymmetry are invariant  under coordinate 
transformations (Bibl.7). The proof i s  l e f t  t o  the reader as an exercise. 

A symmetric tensor  of second rank has six subs tan t ia l ly  d i f f e ren t  compon
en t s  i n  three-dimensional space, while an antisymmetric tensor of second rank 
has only three. Indeed, we have, ident ical ly ,  

The formation of a doubled symmetric pa r t  of a tensor  i s  called symmetri
zation, and t h a t  of a doubled antisymmetric par t  i s  called alternation. 
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Section 8. Various Applications of -~Tensor Algebra

1. The Second Analytic Definit ion of the Tensor 
~ --__. 

, We sha l l  prove the  following theorem: Given the  system of quant i t ies  Tft j 
and,the  a rb i t r a ry  vectors  a,,4,cj . I f  the  sum T:rj a, 4c j  i s  an invariant  
under transformation o f  coordinates ( t h a t  is, an absolute scalar) ,  then the  

, quan t i t i e s  Tf ; are components of  a mixed tensor  of t h i n l  rank, 

L e t  us  make use of the  vector component transformation formulas tha t  r e s u l t  
f rom eqs.(6.3). We have 

Subst i tut ing these r e l a t ions  i n t o  eq.(a) and transposing all terms t o  t h e  l e f t  
s ide of  the equ-ation, we obtain 

Equation ( c )  hold-s f o r  a rb i t r a ry  values of  t he  quant i t ies  a tp ,  bf ,  and 
c f r .  This i s  possible only i f  a l l  coef f ic ien ts  of t he  products af,bf,cTrvan
ish. We then ob%& 

We have again arrived a t  a re la t ion  of the  form of  eqs.(6,3), 
obviously be extended t o  a tensor of a r b i t r a q  rank and structure. 

T h i s  proof may 

2. 	 The Antisymmetric Tensor of-Rank Two as a Vector i n  
Three-Dimensional Space 

We have already noted tha t  an antisymmetric tensor of rank two i n  three-
dimensional space has three subs tan t ia l ly  d i f f e ren t  components. We s h a l l  now 
show tha t  there  exists a vector equivalent t o  this tensor, 

L e t  us first consider the transformation formulas f o r  the  vectors of  the  
reciprocal coordinate base, From eqs..(5.10), (5.3b) and (6.2), we f ind 

- f 

eri =a i  
4

eq. (8.1) 



J 

3y  using the  transformation formulas (5.3b) we obtain 

Comparing the re la t ions  (8.1), ( e )  and (f), we obt4.11 

where t h e  indices  j ,  i, k and q, r, s take the  values 1, 2, 3 i n  the  order of/35 
a posi t ive cycl ic  permutation. 

Consider the transformation formulas f o r  the  components of an antisym
metric covariant tensor  of rank two. It follows from eqs.(6.3) and the  an t i -
symmetry of the  tensor  t h a t  

or, from eq.(8.2), f 

The sign of summation i n  the  right-hand side extends over a l l  pairwise combina
t ions  of the  three numbers 1, 2, 3, corresponding t o  the indices  r and S. 

We introduce the  notation: 

where t h e  symbols j, i, k form the  posi t ive c y c l i c  permutation of the numbers 1, 
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2, 3 .  Remembering eq.(2,6b), we obtain from (h) 

This re la t ion  shows - tha t  eqs. (8 .3)  determine the  components of the  contravari
an t  vector equivalent t o  the  covariant antisymmetric tensor  of rank two. It may 
be shown similarly t h a t  a contravariant a n t i s m e t r i c  tensor  of  rank two i s  
equivalent t o  a covariant vector with the  components 

3. The Vector Product of Two Vectors i n  an Arbitrary__ 
Coordinate Svstem 

Consider the mult ipl icat ive tensor of rank two: 

Performing the  operation of a l ternat ion,  we obtain 

The tensor %,,, according t o  eqs.(8.3), i s  equivalent t o  the  contravariant vec
t o r  

The vector cJ dete+pjnes+the contravariant components of the vector 
product of the vectors  a and b i n  an a rb i t r a ry  coordinate system. Similarly, 

/36 
from eqs. (8.4), we obtain: 

4. Pseudoscalars and-Pseudovectors 

Let us revert  t o  eqm(2.6b). The volume V of the  parallelepiped constructed 
on the  vectors of t he  coordinate basis i s  a scalar. But i t  i s  impossible t o  
find this sca la r  as an absolute. Under coordinate transforanation, t h e  volume V 
varies. In par t icular ,  on passage of the  local coordinate bas i s  from a right-
hand system of coordinate v e c t p s  t o  a left-hand s y s t e m ,  under preservation of 
t he  quant i t ies  of t he  vectors  el ,  the  volume V changes sign. The volume V i s  
therefore called a pseudoscalar. The quant i t ies  R i k ,  defined by eqs.(l)  have 
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similar properties ( fo r  detai.ls see Bibl.7). 

The vector a with the  components expressed by eqs.(8.5) and (8.6), has  a 
dual meaning. If the s i g n f i i s  fixed, then the components of the vector c 
will change signs on passage of the  loca l  coordinate system from a-right-hand 
t o  a left-hand s y s t e m .  I n  t h i s  case the  componen4s of the vector c do not obey 
the  transformation formulas ( 6 . 3 )  and the vector c i s  called a pseudovector. 

If, however, .Ei s  regarded as a pseudoscalar, then eqs. (8.5) and (8.6) 
determine a polar vector, i.e. a vector t ha t  does obey the transformation l a w  
(6.3 ) *  

W e  note i n  conclusion tha t  a vector product ex i s t s  as  a vector only i n  
three-dimensional space, In  rrmlti-dimensional space it i s  considered an ant i 
syrmnetric tensor of rank two instead of a vector. 

Section 9. 	 The Absolute Different ia l  of a Tensor. The Tensor 
Field and the Absolute Derivative 

1. The Absolute Different ia l  of a Tensor 
4 

Consider the variable vector a w i t h  contravariant components: 

Assuming tha t  t h e  components of %he vector and the points of i t s  application /37 
vary, we find the d i f f e ren t i a l  da: 

-. -. -. 
dil =eidai+aide,. 

* 
Let us  find the  contravariant components of the d i f f e ren t i a l  da. From 

eqs.(5.16) we have 

f 

(da)i = daj +aiela del ,  
Further, 

- de.d e1 -- --'dxk. 
a X k  

Using eqs.(2.3) we now find 

We introduce the notation 
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The quan t i t i e s  
Chris toffel  symbols 

r i k  are cal led Chr is tof fe l  symbols of t h e  second kind. 
are symmetric with respect t o  the  indices  i, k: 

Equation ( c )  now takes the  form: 

Quation 19.3) determines+the cantravariant components of t h e  absolute 
d i f f e r e n t i a l  da of t he  vector a. The term ttabsolute d i f fe ren t ia l"  evidently 
arose in connection w i t h  the  ideas  of  absolute motion, which are familiar from 
kinematics. 

Consider the  covariant components o f  the  absolute d i f f e ren t i a l .  From 
eq. (5.11) we have 

-f 

Let.us f ind the  covariant components of the  vector da: 

It follows from eqs.(5.14) tha t :  

Making use of the  re la t ions  (d), (9.1) and (h) ,  we obtain from eq.(g): /3Ef 

This re la t ion  d.e>ermines the  covariant components of the  absolute d i f f e r 
en t id l  of the vector a. 

bde will now show t h a t  t he  Chris toffel  symbols a re  defined i n  terns of the 
components of the  metric tensor, and indicate  the  formulas f o r  t h e i r  t r ans fo r 
matior,. From eqs.(5.10) and (9.1) we have 

(9.5) 




The quant i t ies  

are called Chris toffel  symbols of t h e  first kind. It follows from e q ~ ~ ( 9 . 5 )  
and (5.12) t h a t  

The following formula of transformation of the  Chris toffel  symbols of the  
first kind results from eq.(i): 

where the 9 are t h e  coordinates of t he  new system. 

From the transformation formula (9.7a) and eq.(9.6) it is  easy t o  der ive 
the  transformation formula f o r  Chris toffel  symbols of the  second kind: 

Thus, the Chris toffel  symbols a re  not components of a tenscr,  since they 
do not obey the  transformation formulas (6.3). 

Making use of the  r e l a t ion  (e), we f ind 

or 
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Again making use of t he  re la t ion  ( e )  and eq.(2.5), we obtain L29. 

(9.8 1 

It follows from eq.(9.8) that 

The absolute d i f f e r e n t i a l  of a vector i s  thus completely determined i f  the  
metric of the space i s  known. 

In  conclusion we note the  existence of a d i r e c t  r e l a t ion  between the  abso
l u t e  2 i f f e r e n t i a l  of a vector and the  absolute der ivat ive of the  vector func
t ion  a ( t ) ,  which we know from the  pr inciples  of the  kinematics of a r i g i d  body:-: 

d f i
where dti s  the  r e l a t i v e  ( loca l )  der ivat ive of t h e  vector 2. 

This in t e r r e l a t ion  results-from eqs.(9.1) and from the  def in i t ion  of the 
instantaneous angular veloci ty  w of the  body.”. 

I n  this special. case we f ind t h a t  between the  Chr is tof fe l  symbols and the 
instantaneous angular veloci ty  of an absolutely r i g i d  body there  exists the  re
l a t ion  : 

where the  w;! are t h e  components of t he  antisymmetric tznsor  of instantaneous 
angular veloci ty  of t h e  body, equivalent t o  the  vector w (8.2) 

A d i f f e ren t  in te rpre ta t ion  of t he  meaning of the  Chris toffel  symbols i s  
a l so  possible. It follows from re la t ion  ( 9 . 9 ~ )  tha t  t he  product 
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determines the  generalized r e l a t i v e  angle of ro ta t ion  of the  coordinate b a s i s  
under displacement from the  point M ( x '  ) t o  the neighboring point MT (xi + dxi  ). 

2. Absolute Di f f e ren t i a l  of  a Tensor of Arbitrary Rank 
-and Structure  

Consider the  invariant  

Di f fe ren t ia t ing  the  invar ian t  CD, we obtain 

On the b a s i s  of eqs.(9.3) - (9.4) we represent eq.(d) i n  the following form: 

Here we have changed the  dunmy indices  necessary f o r  the transformation of 
e q .  (.e>. 

Considering eq,(m), we note tha t  i t s  l e f t  s ide and the f i r s t  summands in 
i t s  r igh t  s ide a r e  scalars ,  Consequently, the l a s t  term in i t s  r igh t  s ide i s  
a l so  a scalar.  But the  quan t i t i e s  q, h, cj a r e  components of  a r b i t r a l y  vec
tors .  Consequently, according t o  the second ana ly t ic  de f in i t i on  of a tensor 
(Sect.8), the expressions i n  parentheses a re  components of  a mixed tensor:  

The tensor  DfT" determined by eqs.(9.10) i s  c d l e d  the absolute d i f f e r 
ent ia3 of the tensor'* tkT . . j :  . 
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3* 	 Tensor Field. The Absolute (Covariant) Derivative of a Tensor 
of  Arbitrary Rank and Structure 

A tensor f i e l d  i s  a region of  var ia t ion  of the  coordinates x', such t h a t  
t o  each point of  the region there  correspond values of the  components of some 
tensor. We s h a l l  assume, with infrequent exceptions, t h a t  t he  components of 
t he  tensor  are single-valued functions of t he  coordinates of the  points  of t h e  
f i e ld .  Ye sha l l  a lso  assume t h a t  these functions have ana ly t ic  s ingu la r i t i e s  
a t  i so la ted  points  of t he  f ie ld .  A t  all other  points  of the  f i e l d  the  tensor 
components a r e  continuous and d i f fe ren t iab le  functions of t he  coordinates xi. 
Then, 

Equation (9.10) now takes  the  form: 

i s  called the absolute or covariant der ivat ive of  t he  tensor Tf;;:. The geo
metr ical  meaning of absolute d i f fe ren t ia t ion  will be discussed i n  the  following 
Section. 

Let u s  re turn  t o  eq.(9.9a). This r e l a t ion  may be represented i n  t h e  fol
lowing form: 

Equation (9.13) expresses the  theorem of Ricci: The absolute der ivat ive of 
t h e  metric tensor vanishes. 

This asser t ion a l so  appl ies  t o  the contravariant and mixed components of 
the metric tensor (Bibl.7). 

Consequently, i n  covariant d i f fe ren t ia t ion  the  components of the metric 
tensor  must be regarded as constant quant i t ies .  We suggest t h a t  the reader con
vince himself t h a t  the  well-known-rules f o r  d i f fe ren t ia t ion  of the  sum o r  prod
u c t  of scalar  functions apply t o  the absolute d i f fe ren t ia t ion  of tensor func
tions. 
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Section 10. Pa ra l l e l  Displacement of-Tensors i n  the  Sense of 
Levi-Civita. The Tensor of Curvature, 

__ Displacement1. Para l l e l  -

I n  the  invest igat ion of various vectors o f  geometry and mechanics, it is 
necessary t o  compare tensor quan t i t i e s  ana ly t ica l ly  assigned a t  d i f f e ren t  
po in ts  of space. 

This comparison can be  accomplished after reduction of t he  quan t i t i e s  t o  
be compared t o  a s ingle  point, We meet such reductions, i n  par t icular ,  i n  t h e  
kinematics and s t a t i c s  of an absolutely r ig id  body, where the  system of s l i d ing  
vectors  i s  displaced pa ra l l e l  t o  t h e i r  i n i t i a l  rect i l ine;zr .bases  t o  the  center 
of reduction, In  parallel displacement of a vector, ne i ther  i ts magnitude(m0d
ulus) nor i t s  d i rec t ion  are changed. Consequently, i n  pa ra l l e l  displacement of 
a vector from the  point X(xi ) t o  the  neighboring point 'Elf (2 + dx' ), the  &so
lu te  d i f f e r e n t i a l  of t he  vector mst vanish. Let us adopt t h e  above statement 
as a general def in i t ion  of pa ra l l e l  displacement of tensor quant i t ies .  T h i s  
def in i t ion  o f  p a r a l l e l  displacement coincides i n  essence with the  de f in i t i on  
given by Levi-Civita (Bibl.8). 

Let 6 q : j :  be the  change i n  the components of a tensor under pa ra l l e l  dis
placement from the point N(xl ) t o  t h e  neighboring point MT(x' + dx' ). Then, on 
the  basis of eqs,(9.10), ).t can s e t  up the  system of d i - f fe ren t ia l  equations of 
p a r a l l e l  displa-t. This system has t h e  following form: /lr2 

(10.1) 

I n  par t icular ,  f o r  a contravariant vector we find 

and f o r  a covariant vector 

Ne note i n  conclusion t h a t ,  i n  a vector displacement t h a t  i s  pa ra l l e l  i n  
the  Levi-Civita sense, t he  sca la r  product of the  vectors remains unchanged and 
each of t h e  vectors  entering into the  product may be independently displaced, 
and then the  sca la r  product of t h e  vectors so displaced can be constructed. The 
proof i s  l e f t  t o  the  reader. 

2. Tensor of Cgrvature (Riemann-Christoffel Tensor) 

Equations (10.2) - (10.3) a re  not i n  general t o t a l l y  d i f f e r e n t i a l  equa
t ions,  The result o f  a pa ra l l e l  displacement of vectors i n  the Levi-Civita 
sense, therefore, depends on the  shape and posi t ion of t he  curve along which 
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C h i s  displacement i s  accomplished. P a r a l l e l  displacement in Euclidean space i s  
here an exception. I n  this case it i s  always possible t o  choose a cood ina te  
system such t h a t  t he  components of the  metric tensor  are constant and, conse
quently, the  Chr is tof fe l  symbols vanish. 

Consider the r e s u l t  of a displacement of the  contravariant vector a' from 
the  point M(x1) t o  t h e  point W(xl + dxl + 6x1) on noncoinciding curves passing 
through the point M t  (xl+ dx*) and Ml(2 + 6x1). L e t  u s  calculate  the  compon
en t s  of the displaced vector, using eq.(10.2). Let the  components of the  d is 
placed vector a t  point M be a'. Then, the  components of the  paral le l -displaced 
vector a t  point 149 w i l l  he 

The symbol M, here and hereafter,  denotes the  values of the functions a t  
point M. 

On fu r the r  motion t o  point M" we must bear  i n  mind the  change i n  the  Chris
t o f f e l  symbols, which are functions of the  coordinates o f t h e  points i n  space. 
W e  have, at  point MI? 

where the  Ala1 are  the  changes in the components of the vector 2, on passage t o  
the  point M" along the curve MMfM'I. We s h a l l  neglect th i rd-order  i n f in i t e s - & 
imals. 

Consider now the  r e s u l t  of p a r a l l e l  displacement of  the vector 2 t o  t h e  
point W1 along the curve MMIMtt. The components of t he  parallel-displaced vec
t o r  a t  point Ml will be expressed as follows: 

where the  &a1 a re  the  changes i n  the  vector components ai on passage t o  the 
point IP along the curve MMIMtl. 
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If the  p a r a l l e l  displacement of the  vector i s  accomplished i n  a space 
without i n t e rna l  curvature (in Euclidean space), then (b)  and (d)  a r e  ident i 
c a l l y  equal. Under p a r a l l e l  displacement of t he  vector i n  a non-Euclidean 
space, f o r  instance on a nonplaner surface, (b)  and (d )  w i l l  not coincide. Con
s ide r  t he  vector 

Subtracting (d)  from (e), and making the  necessary changes i n  the  dummy indices,  
we obtain: 

L e t  us consider this equation. Noting t h a t  i t s  l e f t  s ide contains contra-
var iant  components of the  vector, we conclude, based on the second analyt ic  def
i n i t i o n  of  a tensor  (Secte8), t h a t  t h e  expressions 

are mixed components of a tensor  of rank four. This tensor i s  called the cur
vature tensor, o r  the  Riemann-Christoffel tensor. 

I n  Euclidean space, the  curvature tensor iden t i ca l ly  vanishes. I n  fact ,  
i n  Euclidean space we can introduce a Cartesian coordinate system, i n  which a l l  
the  Chris toffel  symbols vanish, as the  components of t he  curvature tensor will 
then a l so  vanish. However, a tensor  tha t  vanishes i n  one coordinate system 
w i l l  a l so  vanish i n  a l l  the  o thers  (Sect-6). 

Consequently, i n  Euclidean space, the  result of the  pa ra l l e l  displacement 
of a vector, ana ly t ica l ly  determined i n  a curvi l inear  coordinate system, i s  in
dependent of t he  choice of the  curve along which the point of application of 
the  vector i s  displaced. The vanishing of the  tensor  R;;: i .  i s  a condition of 
i n t eg rab i l i t y  of t he  equations of pa ra l l e l  displacement. 

The above discussion appl ies  t o  the  pa ra l l e l  displacement of tensors of /lr4 
a rb i t r a ry  rank and structure.  

Consider the  elementary propert ies  of t he  curvature tensor. It will be 
c l ea r  from eq.(10.5) t h a t  it is antisymmetric i n  the  indices  k and r. L e t  u s  
f ind  i t s  covariant components. We have 

L e t  us transform (f). From eq.(9.9a), we obtain 
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Performing the  operation of a l te rna t ion  with respect to t h e  indices  r and j ,we 
obtain 

(10.6) 


and, making use of the  expressions (9.8) for the  Chris toffel  symbols, we get 
4 

T h i s  formula gives u s  the fundamental propert ies  of  the curvature tensor, 
i t s  antisymmetry i n  the  indices  r, j and i , k  and i t s  symmetry i n  the index-
pa i rs  r j  and ik. Hence follows, more specif ical ly ,  t ha t  i n  a three-dimensional 
space the curvature tensor has only six substant ia l ly  d i f f e ren t  components, and 
i n  two-dimensional space (on a nonplanar surface), one. 

In  Euclidean space, a s  already noted, the curvature tensor vanishes. I ts  
vanishing i s  a necessary and suf f ic ien t  condition f o r  t he  poss ib i l i t y  of intro
ducing in to  a space a system of coordinates with the Euclidean metric, i n  which 
the  components of the metric tensor are expressed by the  equations: 

(10.8 ) 

We sha l l  not dwell here on the  proof o f  t h i s  assertion, nor on the  study 
of the various propert ies  of  the  curvature tensor, and r e fe r  the reader t o  the 
specialized manuals+t. 

3. 	 Change of the  Sequence of Operations i n  Successive 
Absolute Different ia t ion 

It can be shown t h a t  a change i n  the sequence of operations of covariant 
d i f fe ren t ia t ion  substant ia l ly  changes the  r e su l t  i n  cases where the curvature 
tensor does not vanish. 

The following equal i ty  can be proved by d i r e c t  calculation: 

-:t Cf ., f o r  instance, Rashevskiy,P.K., Riemannian Geometry and Tensor Analysis. 
Gostekhizdat, 1953. 
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(10.9) 


Consequently, repeated covariant d i f fe ren t ia t ion  i s  c o m t a t i v e  i n  Eu
clidean space, 

~~~L. Geometric Construction of a Covariant Derivative 

W e  can now convince ourselves t h a t  t he  absolute der ivat ive determines the 
major pa r t  of the increment of a tensor function, l i k e  the  der ivat ive t h a t  de
termines the  rnajor part of the increment of .a sca la r  function. Consider, for 
instance, the components of the increment of a contravariant vector correspond
i n g  t o  the  difference between t h e  coordinates of point M(xi ) and W(xi + d 2  ). 
To construct the  vector increment, having vector properties,  a t  point M or 
point N, we must use the  operation of pa ra l l e l  displacement. Ne have 

This equal i ty  compels a t tent ioff  t o  the dua l i ty  i n  the meaning of the  re
su l t :  t he  constructed quan t i t i e s  (Aa); do have the  properties of  a vector a t  
point N, but a r e  expressed i n  terms o f  tensor quant i t ies  determined a t  point N. 

Section 11. Operator of Pa ra l l e l  Displacement of Tensor Quant i t ies  
on the Base Area of a Shel l  

.Nost s tudies  on she l l  theory a re  based on the  reduction of the three-
dimensional problems of  t he  theory of e l a s t i c i t y  and p l a s t i c i t y  t o  two-
dimensional problems, by means of t he  analyt ic  determination of the  quant i t ies  
sought i n  the coordinates and metric of the base surface, 

We sha l l  therefore now discuss  the  problem of the pa ra l l e l  displacement of 
tensor quaxitities from an a rb i t r a ry  point on a given she l l  t o  the  base sur- f& 
face. T h i s  displacement may be accomFlished by in tegra t ing  eqs.(lG,l). 

Ne sha l l  here consider the integrat ion of the  simpler formulas [eqs.(l0.2)
- (10,3)], which permit the  p a r a l l e l  displacement of both contravariant and co
variant  vectors. We sha l l  use the method of successive approximation employed 
by us elsewhere (Bib1.23b) f o r  t h i s  purpose. 

L e t  us  consider again e q ~ ~ ( l 0 . 2 )f o r  the  pa ra l l e l  displacement of a con
t ravar ian t  vector, and represent them i n  the  following form: 

Given t h e  components of t he  vector a' a t  some point N(4)of the  shell .  
L e t  US denote these components by 4. Required, t o  find the  components ai after 
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the  p a r a l l e l  displacement of the  point of application of t he  vector along an 
arbi t raq curve t o  the  base surface. 

Assume t h a t  t he  equations of the  displacement curve are of the  form 

.vi =.v-(u), (11.1) 

and t h a t  

Then, on the  curve selected by us, the Chris toffel  symbols will be as
signed functions of the  parameter U. Then, eqs. (a )  w i l l  take the form 

where 

(11.2) 


(11.3) 


where the  dot ind ica tes  d i f f e ren t i a t ion  wit'n respect t o  U. Following my ear
l i e r  work (Bib1.23b), we replace the  system of  equations (11.2) by the  system 
o f  equivalent i n t eg ra l  equations: 

Subst i tut ing the  i n i t i a l  values of the  components o f  t he  vector ai i n  the 
expression under the sign of integration, we obtain the  first approximation: 

Substi tuting, again, t he  first approximation ( c )  i n to  the  expression under 
the in t eg ra l  sign i n  the  r igh t  side of eq.(11.4), we f ind 

Continuing this process, we obtain, after several  permutations of the  
indices, 



where 

U u u  


(11.6) 


Equation (11.6) def ines  the  resolvent of the system of in t eg ra l  equations 
(ll.4). The displacement of a covariant vector may be s imilar ly  considered. We 
have, from eqs. (10.3), 

da, =N i  a, du, (11.7) 

where . 
N ; ( u ) =  I ' i S ( u ) X s ( U ) .  (11.8) 

From eq. (11.7) we f ind 

a,(u,[io)= + 
KOs (u) a, (u) du. (11.9 j 

This system of i n t e g r a l  equations, l i k e  the  system (ll.l+), i s  solved by 
the  method of  successive approximation. I ts  solution i s  of the form: 

The resolvent Y i  (u, u,) i s  expressed a s  follows: 

U I1 v 


The proof f o r  t he  convergence of these expansions i s  known from the theory 
of Volterra 's  i n t e g r a l  equations of t he  second kind. With insubs tan t ia l  re-
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s t r i c t i o n s  I have a l so  presented the  proof of convergence i n  the work axready 
c i ted  (Bib1.23b). 

The resolvents (u, u, ) and Ylf (u, u,), l i k e  the  Chris toffel  symbols., are 
not  tensor quant i t ies .  These operators permit t h e  displacement of tensor quan
t i t i e s  over a f i n i t e  distance.  We sha l l  c a l l  them operators o f  pa ra l l e l  dis
placement . 

The formulas (11.5) and (11.10) can b e  put i n t o  a d i f f e ren t  form. By ,&&
s e t t i n g  

(11E12) 

we get 

The r e l a t ions  (11.5) and (11.10)wri t ten  i n  this farm are analoggus t o  t h e  
vector-component transformation formulas derived from eqs. (6.3). W e  therefore  
extend eqs.(ll.l3) t o  a tensor of a rb i t r a ry  rank and structure.  By analogy t o  

’ eqs. (6.3) we obtain 

Let us  consider, as an example, the  construction of  the  operators $I:(u,~, ) 
and Yif (u, u,). L e t  t he  metric of the  she l l  be expressed by eqs.(3.6a)-(3.6b), 
The metric defined by these equations i s  encountered i n  an &deformed shell, 0;r 

i n  a deformed she l l  i f  - after i t s  deformation - we choose a new coordinate 
system with the  coordinate l i n e s  coinciding with the  l i n e s  o f  curvature on the 
deformed base surface and with the normals t o  it. 

Assume, f o r  simplicity, t h a t  the displacement t akes  place along a normdl 
t o  the base surface. Then, eqs.(l l . l)  can be put  i n to  the form 

L e t  us  a lso put: 

I n  t h i s  case: 

then 

~ . . I 



-- 

i! 

3earing formulas (5.9b), (9.5) and (9.8) i n  mind, and calculating the  
Chris toffel  symbols rf3,we find t h a t  only  t h e  synhols ri, do not vanish i n  t h e  
sy.stem of  coordinates we have selected. We obtain 

1 
IT;, .=- - - .d,gii =d3  In (1 k,.r3) (i = 1: 2), (11017 )2K;r 

or, kn v i e w  of eqs.(ll.l5), 

. i  d 
1 i3 (u)= 

ar1 
In (1 -- k i l l ) .  (g)  

Making use of eqs,(f) and (g)  and the  expression f o r  the  resolvent, L!Q
(11.6), we f i nd  

or, in the  notation of eqs.(ll.l5) - (11.16), 

.'1);i (x3,z )  =-k ,  (x3 -z)  ( i =  1, 2). 
1 k i X 3  

The remai.ning operators @* vanish. For x? = 0, eq.(11.17) y ie lds  the  op
e ra to r  of pa ra l l e l  displacemeng of a contravariant vector t o  the  base surface 
(Bib1.23b ): 

i 
(9;( 0 , z )  - ki2. (11.18) 

L e t  us  now determine the  operator Yi (u, u,). Using eqs. ( f )  and (g) and 
the  expression f o r  the  resolvent, eq.(ll..ll), we f ind 

o r  
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The o ther  operators  Y; vanish. For x?= 0, eq.(11.19) gives the  operator 
of p a r a l l e l  displacement of a covariant vector  t o  the base surface:-

I212 
Wi(O, x )  = 1 -k i Z  ' (11.20)  

Equations (11.17) and (ll.19) can be d i r e c t l y  obtained from the system of 
equations (11.2) and (11.7), since when the r e l a t ions  ( f )  and (g) a re  satis
fied,  the  system of equations of p a r a l l e l  displacement breaks down in to  indivi
dual equations. 

Section 12. 	 Expansion of Tensor Functions i n  Generalized 
Taylor Se r i e s  

1. Analytical Defini t ion of t h e  Radius Vector of a Point 
of Smce i n  Curvilinear Coordinates 

I n  ana ly t ic  geometry the term radius vector i s  customarily applied t o  a 
directed segment drawn from a fixed point ( the o r ig in  of coordinates) t o  a point 
i n  space. In  a Cartesian coordinate system, the contravariant components of /To 
t he  radius vector of a point a re  equal t o  the components of i t s  terminus o r t o  
differences between the  coordinates of the terminus of the  radius vector and 
those of i t s  fixed origin.  Thus, the radius  vector i s  a geometrical object 
connected wi th  two points  i n  space, and therefore  it i s  not  a vector attach
ment, defined instead by the  coordinates of i t s  point of application. This 
causes the  t rouble  i n  attempts at ana ly t ic  de f in i t i on  of the  radius  .vector i n  
curvi l inear  systems of coordinates, since the transformation formula (6.3) re
l a t e s  t o  a fixed point i n  space. 

To avoid misunderstandings, we s h a l l  introduce the  radius-vector i n to  sys
tems of curvi l inear  coordinates by means of def ini t ion.  We sha l l  f i r s t  def ine 
the  radius vector i n  the Cartesian system of coordinates, as j u s t  indicated. We 
s h a l l  then define i t s  contravariant components i n  an a r b i t r a r y  curvi l inear  sys
tem of coordinates, applying the transformation formulas (6.3). We s h a l l  a t  
the  same time a l so  define the transformation coef f ic ien ts  a t  the  fixed o r ig in  
of the  radius vector. Obviously a radius  vector can e x i s t  only  i n  a space t h a t  
permits introduction of the  Cartesian coordinates. It does not e x i s t  in the  
i n t e r n a l  geometry of nonplanar surfaces. Here we can introduce only small 
radius  vectors wi th  e r r o r s  of the  second order of smallness. 

2. 	 m a n s i o n  of Tensor Functions i n t o  Generalized 
Taylor Ser ies  

The three-dimensional problems of the theory of e l a s t i c i t y  and p l a s t i c i t y  
a re  reduced t o  two-dimensional problems by various methods, among which we must 
mention the  method given by Cauchy and Poisson i n  the  theory of plates. T h i s  
method, based on the  expansion of the required quan t i t i e s  i n t o  Taylor ser ies ,  
w i l l  be discussed i n  Chapter 111. Here we s h a l l  dwell only on the  general prop
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e r t i e s  of such expansions i n  the  space within a she l l ,  referred t o  curvi l inear  
coordinates. 

Let u s  first consider t he  tenso;? of rank n, referred t o  the Cartesian 
system of coordinates. Expanding the components of this tensor in Taylor se
r i e s  i n  t h e  neighborhood of some fixed point M, i n  powers of the coordinate in
crements, and returning again t o  the non-coordinate representation of tensor 
quant i t ies ,  we f ind 

(12.1) 

where the  l e t t e r s  14 and TJ denote quan t i t i e s  determined a t  the  fixed points M 
and N. 

I n  the expanded form, i n  the Cartesian coordinate system, eq.(12.1) has 151 
t‘ne form: 

f 

1 

(12.2) 

4 

where A r  i s  the radius vector with i t s  o r ig in  a t  the point M and i t s  terminus 
a t  the  point N. 

On passage t o  curv i l inear  coordinates, the der iva t ives  a, i n  eq. (12.2)must 
be replaced by the absolute der iva t ives  ye,. We find 

n- 

This equation def ines  the expansion of the tensor T of p a r a l l e l  displace

ment from point M t o  g s i n t  $1. In  o ther  words, this expansion defines the com
ponents of the tensor T a t  point N i n  terms of the values of these components 
and t h e i r  der iva t ives  a t  point M and i n  the metric of space a t  point M. The 
proof of eq. (12.3) follows from two propositions: 

a )  On passage t o  a Cartesian system of coordinates, eq.(12.3) i s  trans
formed i n t o  eq.(12.2), which r e s u l t s  from the  c l a s s i c a l  Taylor expansion. 

b )  A tensor equation va l id  i n  any system of coordinates i s  va l id  in all 
other  systems. 

45 




I II IIII ~111111111 I 


CI-IAF'TW. II' 

PRINCIPAL RELATIONS OF THE NONLIPJEAR THEOFU' OF ELASTICITY 
I N  THE INVARIANT FORM 

Section 1. N e r  and Lagrange Variables. Displacement Vecbor,- -

Velocity Vector and Acceleration Vector of an 
Element of a Continuous Medium 

An a rb i t r a ry  system of curvi l inear  coordinates, determining the posi t ion 
of points  of a continuous medium, but  not connected with the  medium, is called 
a system of N e r  variables.  The M e r  var iables  of t he  points of a continuous 
medium vary on i t s  motion. 

A system of  coordinates determining the posi t ion of points of a medium and 
mater ia l ly  connected with t h a t  m e d i u m  i s  called a system of  Lagrange variables, 
The Lagrange var iables  of t he  points of a medium do not vary on i t s  motion. 

Let us assume for simplici ty  t h a t  t h e  Euler var iables  a re  the Cartesian 
coordinates F,, while the  Lagrange var iables  are the  a rb i t r a ry  curvi l inear  co
ordinates x,. The quan t i t i e s  xi likewise determine a cer ta in  N e r i a n  coordi
na te  system. This w i l l  be discussed l a t e r  i n  Sections 2 and 3 .  

Let us introduce in the  space of Eulerian coordinates a radius vector  de
termining the  posi t ion of t he  points of t he  medium.  When t h e  posit ion of t he  
points  of the  medium varies,  the  radius vector of a cer ta in  point M(xi ) w i l l  
a l so  vary. We have 

4 

The increment u ( t ,  x1) of  the radius vector ;(O, x1), determining the  in i 
t i a l  posi t ions of a point of the continsous med ium,  i s  called the  displacement 
vector of the point M(xi ). The vector u ( t ,  xi) i s  a function of the  Lagrangian 
coordinates xi and the  time t. 

+ 
Determining the  components of the radius  vector r(t, x*) in N e r i a n  co

ordinates, we obtain 

where the  y are the  "physical components'' of t h e  vector <(t,2 1 i n  M e r - /53 
i a n  coordinates. Equations (1.2) may be considered as formulas of  t r ans i t i on  
with the  parameter t, connecting the Lagrangian and Eulerian coordinates. 

B y  d i f f e ren t i a t ing  eq.(l.l) w i t h  respect t o  t, we find the  v e l o c i w  vector  
and t he  acceleration vector of an element of t he  continuous medium: 



Section 2. 	 Tensor of Small Deformations and Tensor of 
F in i te  Deformations 

1. Tensor of Small Deformations and Vector of Small Rotation 
of an Element of a Continuous Medium 

Let us re turn  t o  eq.(l.l). This equation permits t h e  introduction of the  
fundamental quan t i t i e s  describing the var ia t ion of t he  in t e rna l  geometrical 
properties of a space invariably bound t o  the  deformable medium. Such quanti
t i es  are the  tensor of  small deformations and the  tensor of f i n i t e  deformations. 
Let u s  consider first the  tensor  of s m a l l  deformations. 

Different ia t ing eq.(l.l) with respect t o  t h e  coordinates xir  we f i n d  

Further, -. 
dr (0, x i )  =d,r (0 ,  x i )  dxk  =ekodxk.  

where go a r e  the  vectors of t he  l o c a l  coordinate bas i s  i n  the  undeformed me
dium. 

Let us continue the transformation of eq.(a). Using eqs.(I, 9.3) and (I,
9.11), we obtain 

where the  covariant der ivat ive i s  determined i n  the  metric of the  undeformed 
medium, Consequently, 

+ 
Denoting the  contravariant components of t he  vector d r  by dx~', we ge t  

Equations (2.2) show t h a t  t h e  deformation of a continuous medium may be 
regarded t o  be a result of l o c a l  transformations of coordinates in the  neigh
borhoods of t he  points  of t he  medium. 
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-- 

The transformation coeff ic ients  (5k 

(2.3) 


are components of a mixed, tensor of rank two i n  the  metric of t he  undeformed 
medium. Let us consider the  tensor 

(i)i!=- 8; Y k d  =Y,$. (2.4) 

The tensor2$ i s  called the  d i f f e r e n t i a l  expans&zn of t he  vector G(Bibl.7). 
We introduce the  covariant Components of the  tensor @ and expand this tensor 
in to  i t s  symmetric and antisymmetric p a r t s  (I, 7.4). We f ind 

1Oki=1 = 2 (TklLi +Ti u,;)-t-
2 
1 

(CklLi -VilLk).  

The symmetric tensor 

i s  called the  tensor  of small deformations of an element of  t h e  continuous me
dium. The meaning of t h i s  term w i l l  be explained below. 

The antisymmetric tensor 

(2.7) 

leads, on the  b a s i s  of (I, 8 .2 )  t o  t he  vector 

The @dices j ,  k, i are a cycl ic  permut3tion of t he  numbers 1, 2, 3. The vec
t o r  9 i s  called the  curl of the  vector u: 

0 _ _-curl fL. (2.9) 
-. 

It i s  w e l l  known tha t  the  vector R approximately determines the absolute 
rotary displacement of the pa r t i c l e s  of the medium (Bibl.?)-X-. 

4
* The ident i f ica t ion  of the  vector R with the  mean angle of ro ta t ion  i s  possi-, 
b l e  on ly  i n  the  l i n e a r  theory ( B i b l J l b ) .  

LL8 



On the b a s i s  of (I, 9.9d) we note t h a t  the  generalized r e l a t ive  angle of 
ro ta t ion  of adjacent elements of the  deformed medium i s  expressed i n  terms of 
t h e  Chris toffel  symbol in t h i s  medium. To obtain a complete idea of the  kine
matics of a medium a f t e r  deformation, one mus t  tu rn  t o  the  invest igat ion of its 
metric. 

2. Tensor of F in i t e  Deformations &. 
To f ind the kinematic quant i ty  characterizing the change of the dis tance 

between two points  of a continuous medium under $efomt&on, and the change i n  
the  angle between the  d i rec t ion  of two vectors  dr, and br, or iginat ing a t  the  
a r b i t r a r y  point M(x1) of an undeformed m e d i 5  under deformation, l e t  us consi
de r  the  change i n  the  sca l a r  product d?o . 6ro caused by deformation. W e  have, 
on the  bas i s  of eq. (b ): 

-. -. -. -. 
dr, =eiodxi; 6ro=ek,6xk

and 

where the  components of the  metric tensor r e l a t e  t o  the undeformed s t a t e  of t he  
medium. Further, by the  a id  of eq.(2.1), we obtain 

- - .  + - f f 

dr  - 81-=(eio+ejoviuj) (eko-+- eroVkur)dxi6xk= 

(2.10) 


The expressions i n  parentheses are the  covariant components of the  symme
t r i c  tensor of rank two: 

Equations (2.11) determine t h e  tensor  of f i n i t e  deformations of the  con
tinuous medium. From a comparison of eqs.(2.11) and (2.6) follows t he  follow
i ng  relat ion:  

2 0 ,  =2"ik +@;! @kj. (f) 
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For small values of t h e  tensor components2$, t he  tensor D,, will approx
imately coincide with t h e  tensor  of s d l  deformations e l k .  

It w i l l  be seen from eq.(2.10) t h a t  t h e  metric i n  the  deformed medim i s  
determined by the  equations 

(2.12) 

Hence, from eqs.(I.5.9. ) we may f ind the  contravariant and mixed components of 
t he  metric tensor, and then the  Chris toffel  symbols and the  operation of abso
'lute d i f f e ren t i a t ion  i n  t h e  metric of t he  deformed medium. 

3 .  Concluding Remarks 

The reader has probably noted a cer ta in  arbitrariness i n  the  construction 
of the tensor of small deformations and t h a t  of the  tensor of f i n i t e  deforma
tions. We did i n  fact determine the increment of t he  displacement vector in 
the  metric of t he  undeformed medium. It would have been possible, however, t o  
use the  metric of the  deformed medium. 

The a rb i t r a r ines s  i n  the  choice of the  metric i s  not fortuitous.  This ran
domness i s  due t o  the  f a c t  t h a t  i n  a general study of the  in t e rna l  geometry of 
manifolds of coordinates xi, t he  metric i s  introduced by def in i t ion  and cannot 
be connected in advance with the  properties of t he  manifold. These ideas  are 
w e l l  known from modern d i f f e r e n t i a l  geometry (Bibl.6). We have chosen the  s im
p l e s t  method of defining the  metric of a deformed medium and a t  the  same time 
have defined the  tensors of s m a l l  and f in i te  deformations. A d i f f e ren t  j u s t i f i 
:ation of the  r e l a t ions  obtained i s  also possible. One could a s s e r t  t h a t  the  
coordinates xi i n  the  undeformed medium simultaneously define two systems of 
coordinates, the  Ehlerian and Lagrangian. The expressions found f o r  the  tensor  
components of s m a l l  and f i n i t e  deformations a re  connected w i t h  t he  N e r i a n  co
ordinate system. 

Section 3 .  Conditions of Compatibility 

Equations (2.11) determine the  f in i tedeformat ion  tensor components i f  we 
know the  components of t he  vector of displacement of an element of the  contin-' 
uous medium. 

It i s  na tura l  t o  pose the  inverse problem; t o  f ind the  displacement vector 
from the  components of the  finite-deformation tensor. This problem i s  solved 
by in tegra t ing  a system of six nonlinear equations (2.11) with three  unknown 
functions, the  vector components q. Obviously, the  poss ib i l i t y  of a single-
valued determination of the  functions u, from the  system of equations (2.11) 
must be assured by sa t i s f ac t ion  of addi t ional  conditions imposed on the compon
ents  of the  s t r a i n  tensor. It i s  simplest here t o  stazt out from general geo
metrical  considerations. The existence of the  vector u i s  equivalent t o  the 
existence of  the coordinate transformation formulas (1.2), and of transforma
t ion  formulas inverse t o  eqs.(l.2), permitting us t o  pass from the  metric i n  
the  deformed medium t o  the  i n i t i a l  metric. B u t  the  in i t ia l  metric i s  the  
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metric of Euclidean space. In t h i s  metric, the  curvature tensor vanishes iden
t ica l ly .  Consequently, a l so  i n  the  deformed medium the  curvature tensor w i l l  
vanish i f  there  " x i s 2  the  transformation formulas (1.2) o r  i f  there  exists a 
displacement vector u as a single-valued function of t he  coordinates xi at a 
fixed time t. 

The f a c t  t h a t  the  components of the  curvature tensor  vanish i s  the  Wanted 
condition, which must be s a t i s f i e d  by the  s t r a i n  tensor components i n  order 
t h a t  t he  displacement vector determined from eqs.(2.11) be i n  existence. Mak-m 
ing use of (1,10.7), we find: 

where ri:)Jk a re  Chris toffel  symbols of the  f i r s t  kind expressed i n  terms of the  
metric tensor components of t he  deformed medium, Gr 6 .  Subst i tut ing eqs. (2.11) 
in to  eqs.(3.1), we f ind the  required compatibility conditions of  eqs.(2.11), or 
t h e  in t eg rab i l i t y  conditions. A special  case of eqs.(3.1), f o r  small deforma
tions,  i s  given by the  well-known Saint-Venant condition&*. 

Section 4. St re s s  Tensor. Generalized Hookets Law 

1. Linea-r Generalization of Hookers Law. Physical and Geometric 
N_onlinearity of the  Quations of the Theory of E la s t i c i ty  

The second tensor determining the  state of the  deformed medium i s  called 
the  stress tensor. I ts  propert ies  are w e l l  known from the  pr inc ip les  of the  
mechanics of a continuous medium, and they w i l l  not be discussed here. 

The stress tensor  and the  s t r a i n  tensor a re  correlated by a system of re
l a t i o n s  resu l t ing  from the  generalized Hookers law.  This connection i s  usually 
considered as l i n e a r  and i s  accomplished by means of t h e  e l a s t i c i t y  tensorelk, r I. From energetic considerations it follows t h a t  the  components of the  
e l a s t i c i t y  tensor  cikDr B  are qynunetric i n  the  l a b e l s  i and k, r and s, and the  
p a i r  of  indices  ik ,  rs. Thus i n  the  most general case of anisotropy of t h e  ma
terial, the  tensor  C i k t r *  has only 21 independent components. 

The generalized Hookets l a w  i n  the  invariant  form i s  expressed as follows: 

$5 Cf.E.Trefftz, Mathematical Theory of  E la s t i c i ty  and a l s o  (Bibl.7). ONTI, 1934 
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where d k  are t h e  contravariant components of t h e  stress tensor. 

The expressions f o r  t he  components of t h e  deformation tensor in terms of 
t h e . s t r e s s  tensor  a r e  of t he  following form: 

where the  quant i t ies  yrr,  l k  a r e  expressed i n  terms of C i k ,  'Eo f ind these 
expressions, it i s  suf f ic ien t  t o  perform t h e  inversion of eqs.(b.la), solving@ 
t h e  system o f  l i n e a r  equations (,!+.la) with respect t o  Drs  . 

L e t  us consider an i so t ropic  medium. I n  the  case o f  an i so t ropic  medium 
the  e l a s t i c i t y  tensor has only two subs tan t ia l ly  d i f f e ren t  components. A l l  the  
components of the e l a s t i c i t y  tensor can be expressed i n  terms of two indepen
dent quantit ies, .which a re  constants i n  a homogeneous medium. 

We now introduce ,the Lam4 constants h and p :  

EV E-, [ . L E
(1  -2v ) ( l  + v )  2 ( 1  + V j  

The inverse r e l a t ions  a re  of the following form: 

In  eqs.(4.2a) - (4.2b), E i s  Youngfs modulus, ahd u i s  Poisson's constant. 
Equations (,!+.la) can then be represented in the  following form: 

(4.3 1 
oilc =)\hoik 0f- 2pgirg""Drs.

where 

0 =grsDrs 
(4.4) 

i s  the  l i n e a r  invariant  of the  s t r a i n  tensor. 

The quant i t ies  g p q  are the  contravariant somponents of the metric tensor 
of t he  undefomed medium. The introduction of the  metric tensor of  the  de
formed medium would here be superfluous, since it would lead t o  a nonlinear re
l a t i o n  between the  components of the  s t r e s s  tensor and those of the  s t r a i n  ten
sor, which would be contradictory t o  eq.(l+.la). 
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W e  sha l l  not dwell on the  problem of j u s t i f i c a t i o n  of the  analyt ic  expres
sion of the  generalized Hookers l a w  defined by eqs.(.!+.la) - (4 .3 ) ,  but  shall 
adopt these equations as the  d i r e c t  consequences of experimental data, which 
are val id  i n  a ce r t a in  region of  var ia t ion  of the  stress tensor  and the  s t r a i n  
tensor. 

It follows from eqs.(4.3) - (4.4) t h a t  

Passing t o  the  covariant components of the  stress tensor, we find: 

A comparison of eqs.(4,5a) and (4.la) leads t o  t h e  following expression f o r  the  
components of the  e l a s t i c  tensor: 

Equations (,!+.la) - (4.lb) and (4.5a) express the  linear Hookers law, 
s ince the components of t he  stress tensor and the  strain tensor  en ter  l i n e a r l y  
i n t o  these relations.  A t  t he  same time, it mst be emphaszzed t h a t  the ten
sor  D,, contains nonlinear terms i n  the  vector components u and t h e i r  deriva
t i v e s  with respect t o  the  coordinates xi. In this connection, we dis t inguish 
between the physical nonl inear i ty  and the  geometrical nonlinearity of the  equa
t ions  of the e l a s t i c i t y  theory or the  equations of t h e  mechanics of a contin
uous medium with propert ies  more general than those of an e l a s t i c  bodp.  

The nonlinear terms entering in to  the  composition of the  tensor of finite' 
deformation determine the  geometrical nonlinearity of the  equations. Physical 
nonlinearity depends on the  form of functional connection between the  compon
en t s  of t h e  s t r e s s  tensor  and those of the  s t r a i n  tensor. 

2. The Nonlinear Hookers Law 

For an anisotropic  body, on introduction of terms containing products and 
squares of the  components of t he  s t r a i n  tensor, we obtain 

(4.7) 

Here we meet two elastic tensors: the  tensor  Cik*,',discussed above, and 

-2 V.V.Novozhilov i n  h i s  monograph (B ibLl lb  ) gives clear-cut def in i t ions  of 
these forms of nonlinearity. 
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p k ,  'I , This tensor i s  symmetric i n  the  l abe l s  i, k,t h e  tensor of rank six g k ~  
p, q, r, s and the  p a i r s  of corresponding indices. An elementary calculat ion 
shows tha t  t h i s  tensor  has 79 subs tan t ia l ly  d i f f e ren t  components. Consequently, 
there  are 100 subs tan t ia l ly  d i f f e ren t  components of the  tensors  C i k ,  r s  and 
C i k $  P P I  I ,  taken together. 

It i s  d i f f i c u l t  t o  obtain the  expressions determining the  s t r a i n  tensor  
components i n  terms of t h e  s t r e s s  tensor components by inversion of eqs,(4.7), 
since such inversion leads  t o  the  solution of a system of six quadratic equa
tions,  i.e., t o  the  solut ion of an algebraic equation of twelfth degree. Such 
an equation i n  the  general case cannot be solved i n  radicals,  

A l l  this indica tes  t h e  great  d i f f i c u l t i e s  t h a t  a r i s e  i n  the  study of prob
l e m s  of the  mechanics of anisotropic e l a s t i c  bodies with trphysical nonline
arity". 

Consider now an i so t rop ic  body. In  order t o  s e t  up the  invariant  expres
sion of the generalized Hookefs law,  including terms of the  form D p q D r , ,  it i s  
suf f ic ien t  t o  consider t he  components of a tensor  of rank six, constructed from 
the  contravariant components of the metric tensor, permitting us, as a r e s u l t  
of multiplication and contraction, t o  find addi t ional  l i nea r ly  independent 
terms entering i n t o  the composition of t h e  components o f  the s t r e s s  tensor  /60
a i k .  These components of the  required tensor of rank six, a s  can eas i ly  be 
verified,  a re  expressed by three combinations: g i k  g p q g  s, gPqgi 2 s, gip gik@s. 
rhus, the generalized nonlinear Hookefs l a w  may be represented by the following 
invariant  equation: 

Equation (4.8) contains f i v e  parameters determining the e l a s t i c  properties 
of the  medium: The Lam6 constants h and )J. and the  additional coeff ic ients  cl, 
%, %. These coeff ic ients  are constants i n  a homogeneous body. A l l  the 
above-enumerated coef f ic ien ts  a re  experimentally determined. Both eqs. (4.5a)
(4.6) and eq. (4.8) w i l l  contain contravariant components of the metric tensor 
of an undeformed medium. Indeed, the application of t he  metric tensor compon
en t s  of the  deformed medium would lead, as i s  c l ea r  from eq.(2.12), t o  the  in
troduction in to  eq,(LL.$) of addi t ional  terms of t he  th i rd  dimension with re
spect t o  the components of the  s t r a i n  tensor. This would contradict  eqs.(4.7) 
by which, i n  advance, we r e s t r i c t ed  the accuracy of  the  wanted relation. mua
t i o n  (4,8)in essence coincides with the "Voigt-14urnaghan law". A c r i t i c a l  anal
y s i s  of cer ta in  conseqcences t h a t  result f ronrelat ionsanalogous t o  eq.(L5.t3) i s  
given elsewhere (BibLl lb) .  

3 .  Concluding Remarks 

In  most works on the  mechanics of deformable bodies, t h e  construction of 
generalized formulations of Hookefs l a w  i s  based on energetic considerations. 
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A de ta i led  exposition of energetic pr inc ip les  would be outside the  scope of 
this book, and we have therefore  employed an outwardly formal method, postula
t i n g  the  invariance of the  l a w  sought and using the  propositions of  tensor al
gebra fo r  t he  construction of i t s  invariant  formulation. The f o m l i s m  of t h i s  
method 5s i l lusoFj .  It i s  w e l l  known from modern physics t h a t  the  requirement 
of t h e  invariance of the  mathematical formulation of t he  l a w s  of nature r e s u l t s  
from generalized principles,  which are t h e  expanded energetic considerations t o  
which we have referred above. 

Section 5. 	 Equations of Motion of an Element of a Continuous Medium. 
The Linear Lame' Equations 

1. Equations of Motion of an ELement of a Continuous Medium 
i n  an Arbitrary System ofLagrange Coordinates 

The equations t o  be considered determine the motion of an element of a de
formed continuous medium. For this reason, i n  determining the  components of 
t he  metric tensor, the  Chr is tof fe l  symbol, and the  fundamental determinant, 
which are necessary f o r  s e t t i ng  up the  equations of motion, we must base our-& 
selves on eqs.(2.12). Here the  components of the  s t r a i n  tensor en ter  i n t o  the  
fundamental determinant and the  Chris toffel  symbols. 

The fundamental determinant i n  the  deformed medium will be called G. V a r 
ious quant i t ies  connected with the  deformed medium wil l  be indicated by the  in
dex (D). The Chris toffel  symbols i n  the  metric of the  deformed medium will be 
indicated by brackets and braces: 

(5.1) 

The covariant der ivat ive i n  the  deformed medium w i l l  be indicated by 9). 
In  t h i s  notation the  equations of motion of an element of a deformed me

dium a d ,  i n  par t icular ,  of an element of an e l a s t i c  or p l a s t i c  body, a re  o f  
the  following form [cf., f o r  instance (Bibl.7, 8, l l b ) ] :  

where p i s  the  densi ty  3f  the  material of  the  body, a d  p a r e  the  contravariant 
components of t he  m a s s  forces. Making use o f  (I, 9.12), we represent eq.(5,2a) 
i n  t h e  form 

W e  now transform the sum of the  Chris toffel  symbols ii;}. On the  b a s i s  of 
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eq,(I, 5.9a) and (I, 9.8), after the  necessary changes i n  the  dwqy indices, we 
f ind 

Consequently, 

(5.3 3 

Subst i tut ing eq. ( 5 . 3 )  i n t o  eq. (5.2a>, we obtain 

\ 

\

To the  systems of equations (5.2a) or (5.4) we must associate  t he  equation 

expressing the  l a w  of the  conservation of mass. Equation (a )  i s  usually called 
the  equation o f  continuity [cf., f o r  instance (Bibl.7)]. 

2. Linear ~ame‘Equations 

We 3hal.l assume that the  components of t he  tensor of the  d i f f e i e n t i a l  ex
pansions $ (Section 2 )  are small quantit ies.  Accordingly, in the  generalized 
l i n e a r  Hookefs l a w  (4.5a), we will replace the  components of t he  f i n i t e -
deformation tensor  by the  components of the  tensor of small deformations c i k .  
We exclude the  s t r a i n  tensor components of the  equations of motion (5.2a) from 
the  components of the  metric tensor and thus a l s o  from t h e  Chris toffel  symbols. 
Then, the  covariant der ivat ive V y J  i s  transformed in to  the  covariant deriva
t i v e  Vj in the undeformed medium. Subst i tut ing the expressions f o r  the  s t r a i n  
tensor components (k.5a) i n to  eq. (5.2a), we obtain, after simple transforma
tions,  the well-hown Lam6 equations i n  an a rb i t r a ry  curvi l inear  coordinate sys
t e m  (Bibl.7): 
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Multiplying eq0(5.5a) by g l r ,  performing the  operation of contraction, and 
making use of the Ricci theorem, we obtain 

(I- ,  k ,  s- 1 ,  2, 3). 

Before s e t t i n g  up the  nonlinear L a "  equations, l e t  us consider several  
auxiliaqy propositions. 

Section 6. 	 Relationships between Covariant Derivatives i n  Deformed 
and Undeformed Nedia 

1. Fundamental Determinant 

Consider the  expressions f o r  the  quant i t ies  determining the metric and 
p a r a l l e l  displacement i n  the  space of the Lagrange coordinates of a deformed 
m e d i d ; ,  separating from these quan t i t i e s  the pa r t s  l i nea r ly  connected with the  
s t r a i n  tensor components, 

Consider f i r s t  t he  fundamental determinant. Applying the  Taylor formula 
and eqs. (2.12), we f ind: 

2. 	 Covariant and Contravariant Components of the  Metric 
Tensor of a Deformed Medium 

The covariant components of the  metric tensor i n  the  deformed medium a re  
expressed by eqs.(2.12).. Consider the  contravariant components of the  metric 
tensor. W e  introduce a s y s t e m  of generalized Kronecker d e l t a  6 i k J  which have 
the  following properties:  i f  the  indices  i, k, j form a posi t ive cycl ic  permu
t a t i o n  of the  numbers 1, 2, 3 ,  then the  quant i t ies  6 i k J  w i l l  be equal t o  +1, 
whereas i f  the  superscr ipts  i, k, j form a negative cycl ic  permutation of t he  
numbers 1, 2, 3 ,  then the  quant i t ies  G i k J  a re  equal t o  -1; and i f  two iden t i ca l  
numbers are present i n  the  indices  i ,k, j ,  then t h e  generalized Kronecker d e l t a  
6i k vanishX+. 

-

3s For brevity, we s h a l l  speak hereaf ter  of "in the deformed medium" e-tc., 

33'i Detailed information on the  propert ies  of the  quant i t ies  t o  which the  j u s t
introduced generalized Kronecker d e l t a  3 belong, will be found in O.Veblen* s 
book "Invariants of d i f f e r e n t i a l  quadric forms", Chapter 1.,IL, 1948. 
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The fundamental determinant g may be represented by the  following formula: 

r lgk2gj 3 *  (6.2a)g =W j g .  

Similarly, bearing i n  mind eq. (6.1), 

This equation may be simplified by making use of the i d e n t i t y  

Applying the  Taylor f o m l a  and eqs.(2.12), we find 

or, on the  b a s i s  of (I, 5.9a) and eq.(6.2a), 

* 
The expressions i n  parentheses a re  the  components o f  a tensor o f  rank 

fmr. 

We will consider only t h a t  portion of t h i s  tensor  which i s  symmetric i n  
t h e  labe ls  r and s, since the  tensor D,, i s  symmetric i n  these indices. 

L e t  us put 
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The tensor A I k , r s  i s  symmetric i n  the superscr ipts  i and k, r and s and the  
pa i r s  of  these indices. Thus, we f ind 

G i k  =e g i k  +A f k ,  1s Q S + .  ... . . ( 6 . 6 ~ ~ )  

Fiereafter we s h a l l  re ta in ,  in the  equations of ntotion of  tQ5continuous 
medium, only terms which are qu-adratic i n  the t e n s o r  components Cp. Under t h i  c: 
condition, the  small-deTormation tensor must be  mbst i tu ted  f o r  the  finite-
deformation tensor i n  eq. (6.6a). W e  obtain 

G'k =g'k +AikSrs + ... . (6.6b) 

It is here assumed t h a t  t h e  quan t i t i e s  e , ,  are nonvanishing. The case where 
any component of e r s  vanishes requires special  invest igat ion (see also Sect. 
8.h). 

The differences 

(6.7) 

;nay be regarded a s  components of the  contravariant s t r a in  t ; en~or .  It i s  c lear  
from eq.(6.6a) that ,  i n  t he  nonlinear theory of e l a s t i c i t y ,  we musz dist inguish 
the components of the contravariant s t r a i n  tensor from the  contravariant com
ponents of  the  covariant s t r a i n  tensor defined by the  equations 

We will not fur ther  go i n t o  these questions. 

3. Chris toffel  Symbols i n  a Deformed Nedium 

Calculating the  Chr is tof fe l  symbols of t he  f i r s t  kind in the metric of the  
deformed medium, we obtain 

(6.9) 


where 



Retaining i n  the  equations of motion of an elemenJ40f a continuous medium 
only terms t h a t  are quadratic i n  the  tensor components @ , instead of  the quan
t i t y  yJ, i k  we must consider the  quant i t ies  rrJ, f k  : 

On the  bas i s  of (I, 9.8) it i s  easy t o  es tab l i sh  t h a t  the  quant i t ies  /65 
y J , l k  a re  Chris toffel  symbols of the f i r s t  kind i n  a space whose metric i s  de
termined by the  components of the  s t r a i n  tensor D, The quant i t ies  rrj, i k  are  
Christoffel  syrribols of the  first kind in a space with the  metric tensor elk. 

L e t  u s  find the  Chris toffel  symbols of t he  second kind i n  t h e  metric of 
t he  deformed medium. We have 

Retaining i n  the  l e f t  side of eq.(a) the  terms l i n e a r l y  dependent on the s t r a i n  
tensor components and t h e i r  derivatives,  we f ind 

(6.11) 

TtJe now introduce the  notation 

Since we sha l l  retaip+in our equations only n&inear terms wQ&ch a re  quadratic 
i n  tensor components aj, we replace the  tensor P by the  tensor  K with components 
expressed as follows: 

or, i n  accordance with eq.(6.1%), 

{ !k) 5 +Nii! (6.13b) 

‘de sha l l  show t h a t  the quant i t ies  Pl;: a r e  mixed components of a tensor of 
t h i r d  rank. This proof i s  a l so  extended t o  the  quant i t ies  W;;? . 
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Now, se t t i ng  up the  transformation formulas f o r  the  Chris toffel  symbols
{ i { ]  and rll, by eqs.(I, 9.7b), we f ind t h a t  t h e i r  difference Pi;? (or, approx
imately, Nir? ) obeys the  transformation formulas f o r  the  mixed components of a 
tensor  of t h i r d  rank. This tensor i s  symmetric i n  the  indices  i and k. 

4. Covariant Derivative i n  a Deformed Medium 

Consider again (I, 9.12). W e  have 

(6.U) 

I n  par t icular ,  we f ind f o r  the contravariant vector 

(6.1% 

and f o r  the covariant vector 

Let us  consider t he  commutativity of the operators V y )  and V, . From (I, 
10.9) and eq.(6.1%), we find 

Equation (6.16) i s  simplified i f  the space f i l l e d  by the  medium is  Eucli
dean. It i s  precisely t h i s  case t h a t  we sha l l  consider hereafter. But even i n  
t h i s  case, the  operators V , and 0:) are noncomta t ive ,  which considerably com
p l i ca t e s  t h e  nonlinear equations of  motion of an element of an e l a s t i c  or plas
t i c  body. 

5. Conclusion 

The re la t ions  (6.1) - (6.16) found by us  permit der iving approximate non
l i n e a r  equations of motion of an element of an e l a s t i c  or p l a s t i c  body in the  
metric of t he  undeformed medium. These re la t ions  pern i t  an inversion: a l l  t he  
quan t i t i e s  required fo r  this construction can be expressed i n  the metric of t he  
deformed medium. 

To summarize, we may assert t h a t  we have constructed a fundamental system 
of quan t i t i e s  which permit us t o  set up the nonlinear approximate equations of  
motion of an element of a continuous medium in an a rb i t r a ry  curvi l inear  system 
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of  coordinates, i.e., i n  t he  invar ian t  form, i n  one of two metrics: e i t h e r  i n  
the  metric of the  undeformed m e d i u m  or i n  t he  metric o f  the deformed medium. 

Section 7. Nonlinear L a 6  Quation+ 

I n  order t o  s e t  up a system ofequat ionspermit t ing invest igat ion of the  
motion of the  p a r t i c l e s  of  e l a s t i c  bodies under f in i te  deformations, we must 
make use of t he  equations of motion,eqs. (5.&),and t h e  nonlinear HookeTs law 
(BIurnaghanTs law) expressed by eqs.(4.7) - ( 4 . 8 ) .  Here we must know the  COF
ponents of t h e  e l a s t i c  tensor. Since the components of the e l a s t i c  tensor  c,
have been l i t t l e  investigated, even i n  the case of an i so t ropic  body, we sha l l  
confine ourselves t o  the  l i n e a r  TIooke's l a w  (L5a). 

Ye r e c a l l  t h a t  eqs.(4,5a) contain terms nonlinear i n  the tensor components'6 so tha t ,  without considering physical nonlinearity,  we sha l l  preserve geo
metrical  nonlinearity. fi7_ 

Let u s  bear i n  mind eqs.(6.1) and (6.13b). We represent eq.(2.11) i n  the  
following form: 

Xe sha l l  denote by obk the  s t r e s s  tensor components expressed on the bas i s  of 
eqsm(k.5a) i n  terms of  the  components of the  tensor  of small deformations E,, . 
Then, 

The equations of  motion of  arl element of a continuous medium [eqs.(r.L)] 
may be represented i n  the  form 

where 

~ 

3:- These equations were first considered by us i n  Reference 23b, P a r t  11, Sec
t i o n  4. 
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The quant i t ies  @i determine t h e  influence of  geonetrical  nonl inear i ty  on 
the  motion of an element o f  an e l a s t i c  body. These quant i t ies  a re  eqtiivalent 
t o  additional body forces. 

Thus, t o  s e t  up the nonlinear Lame' equati,ons, it i s  suf f ic ien t  t o  intro
duce the addi t ional  body forces  in to  the l e f t  s ide of the l i n e a r  Lame' equa
t ions  (5.5a) o r  (5.5b). We obtain 

These invariant  equations may obviously be represented i n  vector form: 

where 

i s  the  La.place operator i n  an a rb i t r a ry  curvi l inear  system of coordinates, and 

Section 8. 	 Lni t i a l  q d  Eoundary IJonlinear Conditions. /hs
Conditions of Contact of Layers 

1. Ini t ia l - Conditions 

The statement o f  problems of the  mechanics of deformable bodies includes, 
as a necessary element, the  assignment of a system of i n i t i a l  and boundary con
di t ions.  Since the d i f f e r e n t i a l  equations o f  motion o f  an element of a contin
uous mediun are equations of t he  second order w i t h  respect t o  the time t, the  
c l a s s i ca l  i n i t i a l  conditions become applicable: A t  some time t = to, a rb i t r a r 
i l y  called the i n i t i a l  t i m e ,  t h e  posit ions and ve loc i t i e s  of the elements of 
the  deformable medium must be assigned. In connection with the  Tact t h a t  t h e  
posit ions and ve loc i t i e s  of t he  elements o f  the  medium are expressed i n  terms 
of the  displacement vector components and t h e i r  time derivatives,  we have the  
following i n i t i a l  conditions : 

( s o l a . )  

(8.lb) 
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where the  dot  denotes d i f fe ren t ia t ion  with respect t o  time. 

2. Monlinear Boundary Conditions 

We sha l l  consider below only the  case where the  continuous medium is  a 
so l id  body and, i n  par t icular ,  an e l a s t i c  body. 

A feature  of boundary problems of t he  mechanics of  so l id  deformable bodies 
under f ini te  displacements and deformations of t h e i r  elements i s  the  assignment 
of boundary conditions on the  deformed surface of t he  body whose shape i s  t o  be  
determined. On the  deformed surface of t he  body may be assigned: a)  the  com
ponents of the  displacement vector, b )  t he  components of t he  s t r e s s  vector, and 
c )  t he  mixed boundary conditions. The expressions of t h e  boundary conditions, 
l i k e  the  equations of motion of an element of a continuous medium considered 
zbove, r e su l t  from t he  general equation of  dynamics. The der ivat ion of these 
conditions will not be discussed here, and t h e  reader i s  referred t o  general 
Handbooks on e l a s t i c i t y  theory (cf., f o r  example, Bibl.1lb). 

We will confine ourselves here t o  more elementary considerations. Assume 
t h a t  i n  t h e  case o f  the  boundary problem a), the  displacement vector components 
are assigned as functions of the Lagrangian coordinates of the points of t he  

b )  w i l l  be discussed i n  greater  de t a i l .body 	surrace. Problem 

The components cf 
+ 

the  s t r e s s  vector f are expressed by the equations 

oil;llk =f i  (8.2a) 

o r  

sialtk=f, (i, k - 1 ,  2, 3). 

whers rq, a re  the  covariant components of  the u n i t  vector of an external  nor- /6p
m a l  n t o  t h e  deformed surface of the body. 

Since the shape of the deformed surface of the body i s  t o  be determined, 
l e t  us express the  components of the u n i t  vector  of the  external  n c p "  i n  
terms of the  components of t he  un i t  vector of the  external  normal n, t o  the  un
deformed surface. Let us make use of eq.(l.l) and assune t h a t  the  equations o f  
the  surface of the  body i n  parametric form read a s  fol lows:  

xi  - x i ( E ' ,  5') (i = 1, 2, 3). (8.3) 

where 5@ (a = 1,2) a re  the  Gaussian coordinates o f  the points of the surface of 
t he  body. 

We note tha t  eqs.(8.3) remain unchanged under deformation of the  body. 

The coordinate vectors of the  loca l  coordinate bas i s  on the surface of the  
body are  determined by the  equations 
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- -  

- dr dr ax' -- ax;e. =-a r  ---_-
axi at= 

el7 
dE 

( i = l ,  2, 3; a=1,  2). 

The unit vector of t he  external  normal t o  the  deformed surface of the  body i s  
determined by (I, 3.1): 

-n= e1 x e,- . - .  
I e1 x e2 I 

It i s  here assumed t h a t  t he  choice of t he  parameters Sg will ensure the  
d i rec t ion  selected f o r  t he  u n i t  vector z. It follows from eqs.(8.1L) and (8.5) 
t h a t  

Making use of  eq.(I, 8.6), we f ind 

where t j i k r  a re  quan t i t i e s  analogous t o  those considered i n  Sect.6.2. These 
quant i t ies  a re  equal t o  +1if the  l abe l s  i, k, r form a posi t ive cycl ic  permu
ta t ion  of the  numbers 1, 2, 3, while they are equal t o  -1 i f  this permutation 
i s  negative and vanish i n  a l l  other  cases. Then, t he  covariant components of 
the  vector z, determined by eq.(8.6), w i l l  be expressed as follows: m 

where 
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and where the  quan t i t i e s  Cj  and B,, do not depend on the  deformation of  the 
body. 

The contravariant components of the  metric tensor a re  determined from 
eqs0(5.6a). Plaking use of these equations, we ge t  

(B,,Grs)-~= [B,, (gr"+A rs,pq Dpq+...)J-i= 

Confining ourselves t o  the  l i n e a r  approximation, we f ind 

J!Joting t h a t  the  covariant components of the u n i t  vector $ a re  expressed by the  
equations 

noj=Cj (B,,grs)-i7 (8.11) 

we obtain 

(8.12) 

On t h e  basis of eq.(8.12), the  condition (8.2a) f o r  the  deformed surface 
of the  body takes the  following form: 

(8.13 ) 

Equations (8.13) approximately express t h e  nonlinear boundary conditions 
of the problem b). After these remarks, the ana ly t ica l  statement of problem c )  
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i s  now obvious. 

3. 	Conditions of Contact on Surfaces of Separation between Media 
wi th l r a t t  e r  of Different Mechanical Character is t ics  

In  the  she l l  theory we have t o  do with layered aggregates, The theory of 
layered she l l s  i s  developed i n  a monograph (Bib1.1). The conditions f o r  the  
in te r faces  between layers  can be very varied and depend on the  method of con-&, 
s t ruc t ion  o f  the  layered she l l  wKch i s  essent ia l ly  a system of shells.  

Assume, for instance, t h a t  t h e  design of  a layered she l l  ensures t h e  con
t i n u i t y  of t he  f i e l d  of displacements. The stress tensor  components on the in
te r f ace  between the  l aye r s  must obey the  conditions resu l t ing  from Newtonfs 
Third Law. Thus, on the  in te r face  of media labeled k and k + 1, the  conditions 

must be sa t i s f ied .  

4. 	 e n e r a 1  Characterization o f  t h e  Formulation of Konlinear 
Problems of the  Theoxy of  E la s t i c i ty  

The problems of the  nonlinear theory of e l a s t i c i t y  belong t o  two classes. 
The first c l a s s  consis ts  of  weakly nonlinear problems and the second, of  strong
l y  nonlinear problems. The problems of the first c l a s s  a re  charac&rized by 
the  f a c t  t h a t  the  absolute values of the  components of the tensor $I a re  proper 
fractions.  This permits u s  t o  neglect, i n  the  equations of motion of the  ele
ments of an e l a s t i c  body, t he  nonlinear terms w i t h  an index2_qf homogeneity 
greater  than two, r e l a t ive  t o  the  components o f  the  tensor 3. 

A l l  t h e  remaining cases a re  strongly nonlinear. Ilowever, t h i s  c lass i f ica
t ion  i s  a r b i t r a q  and i n  cer ta in  cases inapplicable. We w i l l  d iscuss  these 
cases l a t e r  i n  the  text .  

The re la t ions  of  the  above nonlinear theory r e l a t e  t o  weakly nonlinear 
problems. The question na tura l ly  arises as t o  the  limits of app l i cab i l i t y  of 
weakly nonlinear and strongly nonlinear theory. These l i d t s  obviously depend 
on two groups o� factors.  

The first group of f ac to r s  limits the  appl icabi l i ty  of the equations of 
t he  theory of e l a s t i c i t y  by the  physical propert ies  of the  material:  The de
formation m u s t  be so small t ha t  Hookefs l a w  (L.5a) or the  Voigt-Murnaghan l a w  
(4.8) are sa t i s f ied .  These considerations emphasize the  d e s i r a b i l i t y  of mak
ing  use o f  the  equations of the weakly nonlinear theory and narrow the  limits 
of application of tha strongly nonlinear theory. 

The second group of f ac to r s  has a kinematic meaning and r e s t r i c t s  the  ap
p l i c a b i l i t y  of the  equations of t he  weakly nonlinear theory or, more exactly, 
forces  us  t o  ve r i fy  t h e i r  app l i cab i l i t y  i n  solving spec i f ic  problems. I n  fac t ,  
these equations were formally s e t  up on the b a s i s  of  expansions according t o  



2-4
t h e  degree of homogeneity of t h e  terms containing components of the  tensor  Qi.
In  the  equations were retained only the  terms which, on appli22tion of Hookers 
l a w  (4.5a), w i l l  contain terms l i n e a r  i n  the  tensor  components Q, o r  t h e i r  de
r iva t ives  and squares. LE 

A simple example w i l l  show t h a t  this procedure does not  always lead t o  
success. L e t  u s  consider t h e  equation which i s  familiar from courses on the  
strength of materials: 

E/y" 
(1 +y")a =M- (a) 

Applying the  above procedure, we f ind 

EJy" =M, (b 1 

i.e., here we might reach the  erroneous conclusion t h a t  t h e  equations were  
weakly nonlinear and coincided with the  l i n e a r  theory. 

These e r ro r s  might have2keen avoided i f  we had noted t h a t  yr2 i s  a com
ponent of the s t r a i n  tensor D i n  which, i n  this case, only the  term containing 
yf2 does not vanish. 

Thus, t he  expansion considered by u s  may be simplified by replacing the  
tensor D,, by the  tensor  E l k ,  i f  the  components of  c i k  are nonvanishing. If 
some tensor components cik in some spec i f ic  problem do vanish, then, i n  the  cor
responding tensor  components D i k ,  we must r e t a in  the  terms of higher order and 
eliminate them from the  equations only after an addi t ional  analysis  making al
lowance f o r  the  special  features  of the  problem. 

All above statements lead t o  the  conclusion t h a t  it i s  expedient separ
a t e ly  t o  consider the quan t i t i e s  characterizing nonlinear deformations "as a 
wholeW$. 

Section 9. In te rna l  and Ecternal Nonlinear Problems 

The mechanics of deformable bodies comprises two fundamental problems 
which we sha l l  c a l l  f t i n t e r n d f fand "externaltt. 

The in t e rna l  problem i s  t o  determine the  s t ressed and strained states of 
elements of a moving body. The external  problem i s  t o  describe the motion of 
the  set of elements-of a-body or of the body ?'as a whole" r e l a t ive  t o  a system 
of N e r i a n  coordinates. 

The in t e rna l  state of the  elements of a body i s  determined by the stress, 

++ Cf .(BibLl lb  ) and a l so  I.Gekkeler, S t a t i c s  of an E las t i c  Body, ONTI, 1934, 
pp.8 0-96 . 
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s t ra in ,  and e l a s t i c  tensors. It i s  na tura l  t o  apply here the  Lagrangian coor
dinates. The external problem i s  solved after determination of the'displace
ment vector ii, which on the  b a s i s  of eqs.(l.l) - (1.2) permits es tabl ishing the  
configuration of the  deformed body a t  a rb i t r a ry  time. 

In V.V .Novozhilovt s monograph (B ibLl lb  ), four groups of problems of 
nonlinear e l a s t i c i t y  'theory a re  defined. I n  accordance with h i s  conclusions, 
we will hereaf ter  focus our a t ten t ion  on problems physically l i n e a r  bu t  geomet
r i c a l l y  nonlinear, since it i s  precisely this group of problems t h a t  i s  closest  
t o  t he  nonlinear problems of t h e  theory of e l a s t i c  shells:;. 

The d iv is ion  of  t he  general problem of the  mechanics of e l a s t i c  deformable 
bodies i n t o  an external  and an in t e rna l  problem was  qu i te  f u l l y  accomplished by 
Kirchhoff and Clebsch i n  t,he s t a t i c s  of t h i n  rods. They found t h a t  t he  in t e r 
na l  problem of the  s t a t i c s  of  t h i n  rods i s  l inear .  

The s t ressed and s t ra ined state of the elements o f  a t h i n  rod w a s  de
scribed, perhaps i n  first approximation but  with suf f ic ien t  accuracy, by the 
solution of the  well-known Saint-Venant problem with indeterminate parameters, 
depending on the  solution of t he  external  problem. The solution of the exter
na l  problem required the  integrat ion of systems of nonlinear d i f f e r e n t i a l  equa
t ions  analogous t o  those known from the dynamics of  a sol id  body. 

The above-given equations of nonlinear e l a s t i c i t y  theory do not permit a 
complete separation of t he  external  and in t e rna l  problems, although the  use of 
the  coordinates xi instead of W e r i a n  Cartesian coordinates makes it possible 
t o  advance considerably i n  t h i s  direct ion.  

Considering the quai-cit ies entering i n t o  the equation of the  theory of 
e l a s t i c i ty ,  we note t h a t  t h e  in t e rna l  deformed'.state of the elements o f  a body 
must, according t o  Kirchhoff and Clebsch, be described by the  tensor of  s m a l l  
deformations e i k .  Among the  quan t i t i e s  defining the  s t a t e  of the body "as a 
whole?', the  components of  t he  antisymmetric tensor R i k ,  expressed by eqS.(2.7) 
and the  quant i t ies  I!,] must be included. 

A s  noted i n  (I, Sect.9), the  Chris toffel  symbols E,,]i have a nature simi
l a r  t o  t h a t  of the  tensor of instantaneous angular veloci ty  of  a sol id  body or 
t o  t h a t  of the  vector of  angular veloci ty  of rotat ion of a na tura l  trihedron, 
considered i n  the  theory of t h i n  rods. 'vJe r e c a l l  t ha t  t h i s  vector, according 
to  the  Kirchhoff-Clebsch theory, satisfies equations of equilibrium analogous 
t o  t he  dynamic N e r  equation determining the  motion of a r ig id  body about a 
fixed point. 

Turning t o  the  equations of nonlinear e l a s t i c i t y  theory, we note t h a t  t he  
d i f f i c u l t i e s  a r i s ing  i n  the  general solut ion of  t he  question of  subdividing the  
problem of  dynamic deformation of an e l a s t i c  body i n t o  an external problem and 
an in t e rna l  problem consis ts  i n  ana ly t ica l ly  expressing a generalized Hooke's 
law,  r e l a t ing  the  s t r e s s  tensor  components t o  the  components of the  finite-
deformation tensor and t o  the  analyt ic ,expressions f o r  the  latter. It follows 

:; C f .  (Bibl.llb, pp.125-126). 
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from eqs.(2.6), (2,7), and (2.11) t h a t  the  tensor components D,, can be repre
sented i n  the  following Yorm: L24 

If ,  in accordance with VDV&"zhilov, we consider the case of quan t i t i e s  
c ik  which are s m a l l  i n  comparison w i t h  unity,  then we obtain approximately+ 

It Will be c l ea r  from e q ~ ~ ( 9 . 1 )and (9.2) t h a t  D,, and, consequently, t he  
components of t he  s t r e s s  tensor 01, contain quant i t ies  r e l a t ing  t o  both the  ex
t e r n a l  and in t e rna l  problems. 

Considering the equations of the norLLinear theory of e l a s t i c i ty ,  we may 
s t a t e  t ha t  only the  conditions of compatibil i ty (3.1) belong exclusively t o  the  
external  problem. 

There i s  a resemblance between conditions (3.1) and the  equ-ations of equi
l ibrium of  t h in  rods. This resid-es i n  the  f a c t  t h a t  t he  der ivat ives  of  the 
Chris toffel  symbols, entering in to  the conditions (3.1), are  analogous t o  the 
der ivat ives  of  the instantaneous angular ve loc i ty  components of a natural  tri
hedron o f  the axis of the  rod, which en ter  i n to  the  equ.ations o f  equilibrium of 
t h i n  rods. The difference i s  t h a t  t he  conditions of  compatibility do not have 
a k ine t ic  but o n l y  a. kinematic meaning. 

Section 10. 	Extension of t he  Kinematic Relations of the  Kirchhoff-
Clebsch Thin-Rod Theory t o  ~~ Shel l  Theory~ 

The theory of t h i n  she l l s  proposed by Kirchhoff and Clebsch i s  based on 
the kinematic r e l a t ions  re fer r ing  t o  simplified assumntions related with cer
t a i n  concepts on the deformation of beams. 

We w i l l  show t h a t  the  kinematic r e l a t ions  o f  the theory of t h in  rods can 
be generalized i n t o  the  three-dimensional problems of the theory of e l a s t i c i ty ,  
and first of a l l  i n t o  the  problems of the theory of shells-x-2. 

Let us consider, i n  the deformed body, t he  point M ( 2 )  and the  l o c a l  coor
dinate  bas i s  associated with it. Let us  superpose on this bas i s  the  axis of a 

+> Zquation (9.2) corresponds t o  formulas (1, l l l ) . o f  the au thor fs  book 
(Bib1.I l b  ). 
$:--:tWe have been guided by the exposit ion,of t he  Kirchhoff-Clebsch theory i n  Gek
k e l e r f s  book "Stat ics  of an n a s t i c  Body", OJ!JTI, 1934, Section 3Oa-!+, using it i n  
the  generalization of t he  analyt ic  apparatus of tensor analysis. 
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fixed Cartesian (Eulerian) system of coordinates y,. The neighborhood of the  
point M i s  thus determined by the  coordinates d which are  functions of the  co
ordinates xi. The coordinates d vanish a t  point M. 

L e t  ;(d,yk) be a radius vector drawn from point PI(&) t o  point N ( 4 , d ) .
Let 2 be the  displacement of  point N r e l a t ive  t o  point M: L22 

Clearly, 

-. 
v 
-.(t,x i ;  0)=0; 

dv(t ,  
.-

x i ;  0) 
-0. 

ax;- -

It goes withou-t saying t h a t  2q.(a) has  a meaning i n  a curvi l inear  coordi
nate system only when the  vector u ( t ,  2 ,  y: ) undergoes displacement para l le l ,  
i n  the  sense of Levi-Civita, t o  point 14. 

\le introduce the vector 

and invest igate  t h e  var ia t ion  of t h i s  vector r e l a t ive  t o  a moving coordinate 
base, with the or ig in  being displaced along the coordinate l i n e  $. 

A network of the  l o c a l  coordinate system yi i s  associated with the moving 
base. When t h e  base moves through the  points  1.1 and Pi, which a re  fixed i n  space, 
the  points of  t h i s  network w i l l  be continuously displaced, so t h a t  t he  points  1 4  
and N are  i n  motion r e l a t ive  t o  the system of coordinates yi with i t s  or ig in  a t  
t h e  fixed point M*($ ). 

L e t  us assume, f o r  definiteness,  t h a t  the  motion of  the coordinate base i s  
determined by the  re la t ions  

where the  index k i s  fixed. The parameter sk determines the  motion of the  co
ordinate base. 

Consider t h e  vector 2. I ts  components i n  the  moving system of coordinates 
yJ .willbe 

d = ~ j ( t ,  xi xk;  yi, yk). (10.3) 
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A s  for the  vector ;, representing i t s  decomposition i n t o  the components
$W and MTN, we determine i t s  components by the  equation 

The sign P i nd ica t e s  invariance of eq.(lQ.4). We emphasize t h a t  eq.(lO.L) 
must be regarded as the  de f in i t i on  of vector r, not subject t o  proof, but cor
responding instead t o  elementaqy geometrical concepts. /76 

We rever t  t o  the vector  rd. It follows from the  de f in i t i on  of t h i s  vector 
t ha t  i t s  absolute der iva t ive  wi th  respect t o  the  var iable  & vanishe+: 

-dRi +{;&}ARj=0. 
dsk 

Further, we f ind 

Consequently, 

Noting tha t  it follows from eqs.(l0.2), (10.3) tha t  

we f ind f i n a l l y  

These re la t ions  a re  an extension of  the Kirchhoff-Clebsch kinematic equa
t ions  t o  the three-dimensional problems of e l a s t i c i t y  theory, The Chris toffel  
symbols {jk] , a s  already noted, a r e  i n  t h i s  case associated wi th  the known 

$5 We r e c a l l  t h a t  the point of attachment of  the vector fi i s  the point M. 
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quan t i t i e s  p, q, r of the  theory of t h i n  rod+. 

According t o  the  Kirchhoff-Clebsch theory,_;the stressed state of the  ele
ments of  a rod i s  determined not  by the  vector u of absolute displacement of an 
element of t he  rod but  by t h e  vector of r e l a t i v e  displacement v. The Ynternal t t  
problem i s  solved in the  components of the  vector ;. 

Assume t h a t  t h e  s t ressed state of an element of a she l l  i s  also determined 
by the  vector 7. We then represent eq.(10.7b) i n  the  following form: 

(10.8) 


We also assume t h a t  t he  base area of a she l l  can be chosen such tha t  t he  guan
t i t i e s  V p  vi sha l l  be smll. Then, we f ind i n  first approximation m 

These r e l z t ions  permit us t o  der ive t h e  vector components vi and thus t o  
solve the in t e rna l  problem. The external  problem i s  solved by applying the  
equations of motion. 

are a l so  possible. For example, it fo l -Other appl icat ions of e q ~ ~ ( l 0 . 8 )
lows from t h i s  equation t h a t  

(10.10) 


If ,  as a r e s u l t  of the  smallness of h i ,  we neglect the  term Pi j '.vJ, then 
eq.(10.10) takes  the  form 

avi
V k u i ( t ,  x i ;  y ~ ) = v ~ ~ i ( f ,  Tf ( j i b } M y d  (10.11 )O ) +  

dY0 

Equations (10.10) and (10.11) permit us  t o  develop a method of appl icat ion 
of  three-dimensional problems of t he  theory of e l a s t i c i t y  t o  two-dimensional 
problems, d i f f e ren t  from the  methods known a t  present. 

If  we choose the  base area such t h a t  t he  covariant der iva t ives  such as 

+e Compare with pp.86, 87 of the  above-cited book bg 1.GekJseler "Stat ics  of an 
m a s t i c  Body", ONTI, 1934. 
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vt} ui(t, 4 ; 0) o r  Vk ui (t, 4 ; 0) are su f f i c i en t ly  small in absolute value and 
t h e  y1 a re  also suff ic ient17 small, then eqs.(10.10) - (10.11) permit a l inear 
i za t ion  of t he  expression f o r  t h e  tensor components D,, and a l inear iza t ion  of 
t he  above-derived equations f o r  the  nonlinear theory of e l a s t i c i ty .  

Section 11,	Potent ia l  h e r g y  of Deformation and Kinetic 
Zner,o;y or" the  E la s t i c  Body 

Without dwelling on t h e  well-known conditions of  the  existence of poten
t i a l  deformation energy as a fvnction of t he  strain-tensor components, we wish 
t o  s t a t e  tha t ,  in adopting f o r  pheriomenological considerations the ilooke-Voigt-
Ihrnaghan lad i n  the  form of eq.(L.e) o r  i n  the  more general form o f  eq.(b.7), 
we impl ic i t ly  assumed t h a t  t he  a3ove-mentioned conditions oi existence were sat
isfied-:?. 

The elementary work of deformation has  t he  following form: 

(11.1) 


where 17 i s  the  volume of  the  deformed body. The Pfa f f  form d k 6 D i k  i s  in te - ,& 
g a b l e  i f  eqs. (I,. 7) a r e  sat isf ied.  The conditions of i n t eg rab i l i t y  are  satis
f ied  by t h e  symmetry propert ies  of the e l a s t i c  tensors C:kJ8 and C$kj*q*rs,  indi
cated i n  3ect.L.2. 

Hereafter we shall make use of  the  l i n e a r  Iiookers l aw.  Integrating i n  
t h i s  case the P f a f f  form oik6D,, ,we f ind 

In  the more general case, 

and here 

:$ Nore d e t a i l s  on the  conditions o f  existence of potent ia l  deformation energy 
as a function of the components of the  tensor D,, w i l l  be found i n  A.Love*s 
book "Theory of ELasticity", and a l so  in (BibLl lb ) .  



muat ions  (11.2a) - (11.2b) determine the  poten t ia l  energy of deforma
t i o n  A. The resu l tan t  expressions a re  invariant  under point transformations of  
t h e  coordinates and determine A i n  an a rb i t r a ry  curvi l inear  coordinate system. 

The k ine t i c  energy of an e l a s t i c  body i s  determined by the  following equa
t i o n  : 

The element of volume dV of  the  deformed body i s  connected with t h e  ele
ment of volume dV, of the body before deformation by the  re la t ion  resu l t ing  
from eq. (6.1): 

d V = ( l  +2gikDik+. . .)dl/,; (11 4 1 

The limits of integrat ion i n  eqs.(l l02a) - (11.3) likewise depend on the  
components of t he  s t r a i n  tensor. 

Section 12. Work and Reciprocity Theorem in Nonlinear E la s t i c i ty  Theory 

The theorem of reciprocal work i n  the l i n e a r  theory of e l a s t i c i t y  i s  a 
consequence of t he  iden t i ty  of two invar ian ts  associated with two states of t he  
body : 

A -=ik ' -aflk 
0 - 'Ik - ' i k - (12.1) 

The i d e n t i t y  (12.1) r e s u l t s  from Hookers l a w  (&.la)  on replacing the  ten
sor  Dr, by t h e  tensor  of small deformations E,, . 

We have indicated elsewhere ( B i b l .  23c ) general considerations p e r m i t t i n g m  
various generalizations of the work and reciproci ty  theorem t o  be found. In  
Drder t o  f ind a generalization of the  reciprocal theorem t o  the  nonlinear elas
t i c i t y  theory, l e t  us make use of eq.(4.7), represented i n  the  following form: 

where 

We s h a l l  c a l l  the  stresses o&k reduced stresses.  Consider t he  invariant  
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I n  the  'case of small deformations, the  invariant  A,, passes over i n t o  the  
invariant  A,. From eqs. (12.2a) follows the. ident i ty :  

o r  

It W i l l  be c l ea r  from eqs.( l l02a)  t h a t  eq.(12,4) expresses the  property o f  
reciproci ty  of the  work done by the  reduced stresses of one state of an e l a s t i c  
body on the  s t r a i n s  of the  other  s ta te .  This work may be referred,  fo r  ex
ample, t o  u n i t  volume of the undeformed body. 

We emphasize t h a t  t he  reference of the sca la r  AI, t o  u n i t  volume of the  
undeformed body i s  arbi t rary.  I n  exact ly  the  same my, one might use the  u n i t  
volume of  the  body i n  the  first o r  second state. To this a rb i t r a ry  choice cor- .  
respond three possible in t eg ra l  statements of the  generalized reciprocal theo
rem,  Multiplying eq.(l2.4) by the volume element dV, of the undeformed body 
and integrat ing over the  volume V,, we f ind 

(12.5 1 


Consider the  in t eg ra l  

We have 

Further, 

and, applying the  Ostrogradskiy-Gauss formula, we f ind  



(12.8) 


where i s  the  u n i t  vector of t h e  external  normal t o  the  surface S, of the  un
deformed body. 

Using eqso(5.2a) and the  re la t ion  (6.15a), we get 

-e 

The vector may be regarded a s  the  force related t o  un i t  volume of the 
undeformed body. I n  t h i s  case, however, it must not be forgotten t h a t  a l l  the  
k ine t ic  quant i t ies  i n  eq.(12.9) a r e  connected with an element o f  volume of  the 
deformed body . 

On the bas i s  of eqs.(12.6) - (12.9), eq0(12.5) takes  the following form: 

Equation (12.10) may be regarded as the formal  generalization of the the
orem of work and reciproci ty  o f  the  l i n e a r  theory o f  e l a s t i c i t y  t o  the problem 
of the  mechanics of anisotropic e l a s t i c  bodies with physical and geometrical 
no;ilinearity. In f a c t  eq.(12.10), a t  s m a l l  deformations and i n  the absence of  
i n e r t i a l  forces, y ie lds  t h e  c l a s s i ca l  theorem of work and reciprocity.  

Ne note i n  conclusion t h a t  the  use of other  methods f o r  select ing the ini
t i a l  invariant  A,,, would y ie ld  other  i n t eg ra l  equations which would l ikewise 
generalize, i n  the  above sense, the  reciprocal theorem of the  l i n e a r  theory of 
e l a s t i c i ty .  A l l  these generalizations do not l i t e r a l l y  comespond t o  the clas
sical theorem since they contain quant i t ies  which a re  only by convention termed 
by u s  and %odglt forces. The question of the  poss ib i l i t y  of proving 
the reciprocal theorem, f r e e  of these a rb i t r a ry  elements, s t i l l  remains open. 

Section 13. n a s t i c  Medium with I n i t i a l  Stresses  /81 
Ir,many cases it i s  necessary t o  invest igate  the  deformation of elements 

of an elastiLc body i n  an already established stressed state. 

The book by A.Love contains examples of cases i n  which the i n i t i a l  s t r e s ses  
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cannot be neglected. One of these examples i s  taken from the  theory of she l lg t  

The modern prac t ice  of designing reinforced concrete and steel s t ruc tures  
with prestressed elements likewise furnishes numerous examples from the  f i e l d  
of  mechanics investigated in the  present study and demonstrates the  necessi ty  
of formulating a general theory permitting a su f f i c i en t ly  rigorous mathematical 
analysis of these problems and similar ones. 

The question of the  re la t ions  between the  components of the tensor of  
addi t ional  s t r e s ses  and the  tensor  of addi t ional  deformations was  posed long 
ago . 

Love indica tes  tha t ,  t o  es tab l i sh  the r e l a t ions  between the addi t ional  
s t r e s ses  and s t ra ins ,  we must t u rn  t o  a more general theory than tha t  developed 
i n  the c lass ica l  mechanics of e l a s t i c  bodies, o r  t o  prac t ica l  experiments. The 
outmoded theory of Cauchy and Green i s  obviously in su f f i c i en t ly  substantiated++. 

We present below the  re la t ions  between the addi t ional  s t resses  and the  
addi t ional  s t r a i n s  resu l t ing  from re la t ions  (,!+.la) containing geometrically non
l i n e a r  terms. 

We sha l l  assume t h a t  there  exists an initial undeformed state of the  body,
The body i s  then deformed and the i n i t i a l  s t r e s ses  C T A ~  and displacements ki  
appear and a re  re la ted  by eqs. ( L o l a ) :  

(13.1 ) 

Equation (13.1) corresponds t o  the  mechanical methods of es tabl ishing 
i n i t i a l  stresses.  If the i n i t i a l  s t resses  a re  due t o  thermal effects,eqs. (13.1) 
must be supplemented by temperature-dependent terms. 

Consider cer ta in  consequences resu l t ing  from eqs. (13.1). A s  a r e s u l t  of 
the additional s t ra in ,  l e t  new s t r e s ses  and displacements ar ise ,  connected with 
t h e i r  i n i t i a l  values by the  re la t ions  

(13.2) 


It i s  here assumed t h a t  t he  components v, are s m a l l  i n  absolute value, Le. ,  /82
small in re la t ion  t o  a cer ta in  charac te r i s t ic  measurement of the body. In the  
she l l  theory, such a quant i ty  i s  the  thickness of t he  shell .  

Subst i tut ing e q ~ ~ ( 1 3 . 2 )i n t o  eqs.(l+.la) we obtain, a f t e r  a n d e r  of trans
formations and discarding the terms t h a t  are nonlinear i n  v, and the  deriva
t ives  of vi : 

~ 

$F Cf .  A.Love, Mathematical Theory of E la s t i c i ty  (Russian Translation) ONTI, 
1935, pp.120 - 122. 
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(13.3 

Symmetrizing the  left-hand s ide of this equation in the  indices  r and s, 
we f ind  

T i k  =-
0 
1 (,+ rs +c f k .jsvju; +c i k n/ r

v j d )  (vsvr  + v r v J  (13.41 

L e t  

where PI i s  the tensor  of small addi t ional  deformations. Then, eqs.(l3.4) 
take on the  form of a generalized Hookers l aw:  

The quan t i t i e s  xikr may be considered as being components of the e l a s t i c  ten
sor  i n  a body wi th  i n i t i a l  s t resses .  

I n  eq.(13.5) we replace the  tensor  componentsVJG by t h e i r  expressions i n  
terms of  the tensor components eik and Q,, resu l t ing  from eqs.(2.6) - (2.7). 
We then f ind  

It i s  c l ea r  from eqs.(13.5) and (U9k3) tha t ,  under largc2aisplacements of 
u, or of components of  the s t r a i n  tensor  e and of the tensor  s1 connected with 
ro ta t ions  of elements of the body, a prestressed body on subsequent deforma
t ions  must be regarded a s  an inhomogeneous body with varied anisotropy. I n  
par t icu lar ,  an i so t rop ic  body i s  converted in to  an anisotropic  body. These 
f a c t s  a r e  a l so  known from geometrical optics,  but i n  solving the problems of 
t h e  mechanics of e l a s t i c  bodies they a r e  of subs tan t ia l  importance only in d i s i  
placements of $_high $9 modulus, f o r  great  absolute values of the components 
of t he  tensors  e and 0. A l l  above statements a l s o  apply t o  physically non
l i n e a r  e l a s t i c  bodies, f o r  which the  r e l a t ions  (4.7) a r e  valid. 
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CHAPTER I11 /83 
REDUCTION OF THE THREE-D7MEI\ISIOI'JALPROBLEM OF THE MECHANICS 

OF ELASTIC B O D I S  TO THE TVJO-DDENSIONAL PROBLENS 
OF THE THEORY OF SHELLS 

Section 1. General Characterization of  t he  Problem 

The solution of the  three-dimensional problems of  e l a s t i c i t y  theory in
volves considerable mathematical d i f f i cu l t i e s .  For this reason, long ago, dur
ing  the  very development of the  methods for solving the  problems of e l a s t i c i t j  
theory, two groups of problems were distinguished, permitting the subs t i tu t ion  
of systems of  elastodynamic equations bg systems of a p p r o a t e  equations con
ta in ing  a smaller nmiber o f  independent var iables  than the  or ig ina l  equations. 
This decrease i n  the number of independent var iables  i s  equivalent t o  decreas
ing  the  number of dimensions of space, since the independent var iables  i n  the  
equations of e l a s t i c i t y  theory a re  the space coordinates and time. 

The two mentioned groups of problems a re  the  problems of the  motion of ele
ments of t h in  e l a s t i c  rods and those of the dynamically stressed and s t ra ined 
s t a t e s  of shells.  

In the  former case, the  re la t ions  of two s p a t i a l  measurements o f  the  body 
t o  the th i rd  dimension are  negligible,  so t h a t  t he  three-dimensional problem of 
the  e l a s t i c i t y  theory can be reduced t o  a one-dimensional problem. 

I n  the s h e l l  theory, it i s  assumed t h a t  the  r a t i o  of one of the  dimensions 
of the  body - t he  thickness of the  she l l  - t o  t he  other  dimensions i s  small. 
Then, as we s h a l l  show, the  three-dimensional problem of the t h e o q  of e l a s t i 
c i t y  can be approximately redu-ced t o  ei two-dimensional problem. 

The r a t i o  of the thickness of a she l l  t o  one of the  charac te r i s t ic  parame
ters determining the dimensions of  the  she l l  i s  l imited by various conditions 
i n  conventional s tudies  of the  subject matter. These conditions depend prima
r i l y  on the  accuracy of the  approximate representation o� the  three-dimensional 
dynamic boundary problems of t he  two-dimensional e l a s t i c i t y  theory. It i s  ob
vious tha t  the  boundary conditions of the  problem are  of great  importance here. 
It i s  therefore impossible t o  set up any general absolute c r i t e r ion  which the  
thickness of a s h e l l  must sa t i s fy ,  t o  ensure a predetermined accuracy i n  the  /E& 
solution of equations approximately describing i t s  s ta te .  

We give below a b r i e f  survey o f  the  present methods o f  c lass i fying s h e l l s  
according t o  t h e i r  thickness. This c l a s s i f i ca t ion  a l so  involves concepts on 
the  limits of appl icabi l i ty  of  various methods o f  ana ly t ica l  descr ipt ion of t he  
dynamically s t ressed and strained state of a shel l .  

'de w i l l ,  make some preliminary remarks::- on the  general problem of  reducing 

-% Me r e c a l l  t h a t  there  a re  two-dimensional problems i n  the e l a s t i c i t y  theories  
t h a t  are not connected with s h e l l  theory. 
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t h e  three-dimensional problem of the  e l a s t i c i t y  theory t o  a two-dimensional 
problem, under the  assumption t h a t  the  s h e l l  i s  an e l a s t i c  body. Let u s  se l ec t  
on the  base surface of an undefsmed she l l  an a rb i t r a ry  coordinate system xi (i= 
= 1,2). The coordinate vector e, i n  the  undeformed she l l  will be_;taken, ac
cording t o  (I, Sect.3) as equal t o  the  unit vector of the  normal n t o  the  base 
area. The vectors z i ( l  = 1, 2, 3 )  form the  l o c a l  coordinate base. W e  agree 
tha t  the mutual or ientat ion of these vectors corresponds t o  a right-hand coor
dinate  system. 

The general program of reduction of the  three-dimensional problem of the  
theory of e l a s t i c i t y  t o  a two-dimensional problem consis ts  i n  constructing ana
l y t i c  expressions f o r  the  quant i t ies  characterizing the  stressed and s t ra ined 
s t a t e  of the  she l l  i n  terms of new quant i t ies  determined in the  coordinates 
xi (i= 1, 2) of i t s  base area, and in  se t t i ng  up the  equations t h a t  these quan
t i t i e s  must s a t i s f y  in the  region of var ia t ion  of t he  var iables  xi and on t h e i r  
boundaries . 

The equations of s h e l l  theory might be said t o  describe the  s t ressed and 
strained state of the base area. Obviously, these equations mus t  not  contain 
der ivat ives  with respect t o  the  coordinate 2. 

A s  we sha l l  show l a t e r ,  the  "reduction problem" has no unique solutior+. 
But the solution, on the other  hand, cannot be completely arbi t rary.  It i s  re
s t r i c t ed  by the  requirements of optimum appr'oximate representation of the  equa
t ions  of e l a s t i c i t y  theory by the  equations of s h e l l  theory. It i s  w e l l  known 
from the  theory of approximation functions t h a t  t he  concept "optbum approxima
tion" i s  not e n t i r e l y  def in i te .  For example, there  exist optimum approxima
t ions  a t  a given point of a manifold t o  which an approximation function i s  as
signed, optimum approximations i n  the  mean i n  a cer ta in  region of var ia t ion  of 
i t s  arguments, etc.. To d i f f e ren t  methods of approximation functions there  COP 
respond d i f f e ren t  methods of approximate reduction of the  three-dimensional /s5
problems of e l a s t i c i t y  theory t o  two-dimensional problems. 

The solution of t he  reduction problem depends la rge ly  on the  choice of t he  
approximation method f o r  the components of the  stress tensor o r  D,, of the 
s t r a i n  tensor, considered a s  functions of t he  coordinate 2. 
Section 2. 	 Remarks on the  Methods of Reduction given by Poisson, 

Cauchy, Kirchhoff, and Love 

General methods f o r  the  reduction of a threedimensional s t a t i c  problem of 
the  e l a s t i c i t y  theory t o  a two-dimensional problem were developed by Poisson 
and Cauchy, i n  considering the  equilibrium of a plate.  These great  mathemati
cians applied the  expansion of t he  s t r e s s  tensor  components in ascending power9  
of the  coordinate z ,  measured along a normal t o  the  undeformed middle plane of 
t he  plate. Using the  equations of equilibrium of an element of a continuous 
medium, and assuming t h a t  t he  boundary planes of the  p l a t e  were  free of loads, 
Cauchy and Poisson obtained a fundamental s y s t e m  of equations and boundary con1 
d i t i ons  of the  boundary problem f o r  the  equilibrium of a plate. The Cauchy

-% Here and hereafter,  f o r  brevity,  we w i l l  use the  term rtreduction problemrt. 
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. . -. 

Poisson method was  subjected t o  a c r i t i c a l  anaiysis  by Saint-Venant, Kirchhoff, 
md several  o ther  investigators.  Saint-Venant noted t h a t  it was not  fully jus
t i f i e d  t o  expand stress tensor  components not known i n  advance in to  series i n  
powers of even t h e  r e l a t i v e l y  small coordinate Z. These ser ies ,  i n  h i s  opinion, 
might converge i n  a su f f i c i en t ly  small neighborhood of an i n t e r i o r  point of t h e  
plate,  bu t  t h e i r  convergence over the  en t i r e  range of var ia t ion  of the  coordi
nate  2; might not take place. H e  referred i n  this connection t o  the inaccurate 
results obtained by the  Cauchy and Poisson methods i n  the  theory of the  tors ion  
of prisms. For this reasonb he preferred d i f f e ren t  methods of s e t t i ng  up the  
fundamental system of equations of t he  theory of plates ,  including the  Kirch
hoff method, based on well-known simplifying hypotheses’.+. 

We sha l l  not dwell here on a discussion of the  boundary conditions i n  the  
theory of plates,  since we will rever t  t o  this subject later. Saint-Venantts 
objections t o  the  Cauchy and Poisson methods, t o  a considerable degree, re
f lec ted  the  s t a t e  of t he  theory of  e l a s t i c i t y  i n  the  t h i r d  quar te r  of the  l as t  
Zentury. It is  known that ,  a t  t h a t  time, only the  foundations of the  general 
solution methods f o r  boundary problems of e l a s t i c i t y  theories  were being pre
pared, permitting conclusions from the  ana ly t ica l  propert ies  of these solutions. 

In  the  l as t  quar te r  of the 19th Century, the  work done by Somigliano, Vol
terra,  and Lauricel la  led t o  the  conclusion that ,  i n  the  absence of body forces, 
the solution of t h e  problems of t he  s t a t i c s  of an e l a s t i c  body are ana ly t ic  /86
functions of the  coordinates of internal points  of the  body, i.e., these solu
tions can be expanded i n  series i n  pos i t ive  powers of the  coordinates’.:-.’+. But 
the convergence of these expansions on the  surface of the  body requires a sep
arate invest igat ion f o r  spec i f ic  problems. Moreover, t he  conclusions on the  
analyt ic  propert ies  of a solution of s t a t i c  problems can be extended t o  the  dy
namics of e l a s t i c  bodies only after addi t ional  analysis. 

W e  sha l l  now present f a c t s  confirming the  significance of the  method under 
discussion. We r e c a l l  t ha t  t he  method of the preliminary introduction of ex
pansions i n  ser ies ,  used by Poisson and Cauchy in the  theory of plates,  i s  en
countered even today i n  various f i e l d s  of t he  e l a s t i c i t y  theory, f o r  example in 
the  s t a t i c  plane problem. Here, on the  S a s i s  of t he  ana ly t ic  propert ies  of so
lu t ions  of t he  plane problem, expansions i n  power s e r i e s  a re  introduced, and 
then t h e i r  convergence over t he  e n t i r e  region of determination o f  the required 
functions, including t h e i r  boundary, i s  confimed i n  special  case$:-.’:-.’t. The 
method of  expansion of the  required functions in series in posi t ive powers of 
the  coordinate 2, as could have been predicted, was  found t o  be an’ef fec t ive  
m e a n s  of constructing the  theory of th ick  p l a t e s  (BibLqb, 2%). 

* Saint-Venantts c r i t i c i sm of the  work of Poisson and Cauchy i s  given by 
Clebsch i n  the  book “Theory of E l a s t i c i t y  of Solid Bodies”, Pa r i s ,  1883, 
pp.722 - 725. 

y ” 
e-Cf., f o r  example, E.Trefftz, Mathema-cical Theory of Elast ic i ty ,  ONTI, 1934, 

p.135. 

JL 

, t + c ~  C f  .N.I.Muskhelishvili, Some Fundamental Problems of the  Mathematical 
Theory of Elas t ic i ty ,  USSR Academy of Sciences, 1949. 
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A-ll the  above permits us  t o  a s s e r t  t h a t  Saint-Venantts c r i t i c i sm of the  
Poisson and Cauchy methods i s  not suf f ic ien t  reason for abstaining from a fur
t h e r  development of these methods with respect t o  the  theory of shells.  Proper 
caution must, however, be exerted i n  the  special  cases noted below. 

The Kirchhoff theory w a s  subsequently extended by A.Love t o  include the  
theory of shells.  The Kirchhoff-Love theory i s  based on the  well-known postu
la te  t h a t  t he  normal t o  t h e  undeformed middle surface of a she l l  remains normal 
t o  it even a f t e r  deformation. This hypothesis i s  supplemented by one of two 
hypotheses about t he  var ia t ion  i n  i t s  length. 

According t o  the  first of these hypotheses, a segment of a normal t o  the  
middle surface enclosed. within a she l l  does not  vary i t s  length &der deforma
t ion  of t he  shell .  I n  t h i s  case, the Kirchhoff-Love hypothesis i s  appropri
a t e l y  called the %.ypothesis of s t r a igh t  constant normals**. 

According t o  the  second version it i s  assumed t h a t  t he  normal s t resses  ~ 7 ~ 3  
are  small by comparison with axirk 1 ( i ,k  = 1,2) and can be neglected+. W e  /87 
note tha t  t h e  first hypothesis i s  not equivalent t o  the second, a f a c t  which i s  
not made su f f i c i en t ly  c l ea r  i n  cer ta in  well-known monographs. 

The llhypothesis of an invariant  normal" na tura l ly  leads  t o  a replacement of 
the vectors of stresses act ing a t  t he  boundary of a she l l  element with genera-
t r i c e s  normal t o  the  middle surface by the  s t a t i c a l l y  equivalent system of 
forces  applied t o  the  contour of an element of t he  middle surface. We empha
s i ze  tha t  this subs t i tu t ion  of the ac tua l  s y s t e m  of stresses by a system of 
forces  and moments s t a t i c a l l y  equivalent t o  it i s  in t e rna l ly  i n  harmony with 
the  "hypothesis of s t r a igh t  and invariant  normals*s~-+*. 

In  the  remaining cases this agreement does not appear. The Kirchhoff-Love 
hypotheses introduce an unremovable e r r o r  i n t o  the equations of she l l  theory, 
and t h i s  e r ro r  must be taken in to  account i n  evaluating the  poss ib i l i ty  of var
ious  simplifications of the  equations o f ' s h e l l  theory. 

Section 3. 	 Preliminary Classif icat ion of Shel l s  Connected with the  
Kirchhoff-Love Hypotheses. Linear and Nonlinear Problems 

The work by V.Novozhilov and R.Finke1tshtey-n (Bibl.28) gives an estimate 
of the e r ro r  introduced by the  Kirchhoff-Love hypothesis i n to  the equations of  
she l l  theory. It was  shown t h a t  this e r ro r  i s  of the  order of max(2hk, ), where 
k, i s  one of the  pr incipal  curvatures of t he  shel l .  This estimate permits u s  
t o  dis t inguish t h e  c l a s s  of she l l s  f o r  which the  equations of c l a s s i ca l  s h e l l  
theory based on t h e  Kirchhoff-Love hypothesis are s t i l l  suf f ic ien t ly  accurate, 
permitting, f o r  example, a determination of t h e i r  s t r e s s  f i e l d s  with a r e l a t ive  
error not exceeding 5%. These s h e l l s  are called thin.  A l l  o ther  s h e l l s  w i l l  
- -
+t Here are the "physical components**of the  stress tensor. C f . ( I ,

Sect.5) and (I ,  Sect.7). 

w* Here and hereaf te r  we assume the  reader t o  be fami l ia r  with the  theory of 
shel ls ,  f o r  example t o  the  extent given i n  (Bib1.lla). For this reason, we use 
cer ta in  terms without first giving t h e i r  def ini t ion.  
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here be called th ick  s h e l l s  o r  s h e l l s  of medium thickness-. Let us define 
these ideas  using t h e  def in i t ions  given i n  several  modern studies. W e  in t ro
duce the notation (Bib1.1):  

m a x ( 2 h R , ) = ~ ;  max - =q, (3.1)('n") -

where cz i s  one of the  parameters determining the  dimensions of the basic  sur
face of the shel l ,  

The c lass i f ica t ion  of she l l s  i n t o  th in  and th ick  i s  related primarily t o  
the  quantity e. Most often, because of  the  f a c t  t h a t  t he  r e l a t ive  e r ro r  of the  
solution of approximate equations considered i n  she l l  theory i s  r e s t r i c t ed  t o  
5%, a she l l  i s  cal led t h i n  i f  the  condition (Bib1.1, lla) /88 

e < -
1 (3.2) 

20 -
i s  sat isf ied.  

If the condition (3.2) i s  not sa t i s f ied ,  the she l l  i s  called thick. Of 
course, the condition (3.2) i s  somewhat arbi t rary,  since a rigorous estimate of 
the  e r ro r  of solut ions of t he  equations of she l l  theory, constructed on the 
bas i s  of simplifying assumptions with various boundary conditions, i s  very d i f 
f i cu l t .  

The upper l i m i t  of values of 1 has been insuf f ic ien t ly  studied. S.A.Ambar
tsumyan (Bibl.1) assumes i n  h i s  book tha t  TI I; 0.1, w h i l e  A.S.Voltmir i n  h i s  
book (Bibl.4) s t a t e s  t h a t  7 0.2. The quantity can obviously not be deter
mined without a del imitat ion of the c lass  of the  boundary problems of  she l l  
theory. 

K.Z.Galimov and Kh.M.Mushtary i n  t h e i r  monograph (Bibl.10) have pointed 
out a d i f fe ren t  approach t o  the  c lass i f ica t ion  of shel ls ,  obviously based on 
physical considerations. A shel l ,  according t o  these authors (Bibl.lO), i s  
called th in  i f  it satisfies the condition 

(3.3) 

Whereas, i f  it satisfies the  condition 

ep < 2hf.-' <VEp (3.4) 

-~ 

* The method of evaluating the  e r ro r  introduced by the  Kirchhoff-Love hypothe
sis, advanced by Novozhilov and Finkeltshteyn, has evoked c r i t i c a l  remarks by 
V.M.Darevskiy (Bib1.22). 
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a she l l  i s  of medium thickness. Here L i s  a l i n e a r  dimension, charac te r i s t ic  
f o r  a she l l  or a plate,  f o r  example one of the  pr incipal  r a d i i  of curvature of 
the  basic  surface or i t s  smallest diameter. The quant i ty  cP i s  the r e l a t ive  
elongation corresponding t o  the  proportional l i m i t  of the material  of the  shell .  

A number of invest igators  suggest t h a t  no preliminary r e s t r i c t ions  be im
posed on the thickness of t he  shel l ,  'de sha l l  re turn l a t e r  t o  t h i s  question, 
when we base our own c lass i f ica t ion  of shel ls ,  as a function of t h e i r  thick
ness, on the theory or̂ propagation of dynamic wave processes i n  such shells.  

It i s  well known t h a t  p l a t e s  and she l l s  a r e  e l a s t i c  bodies i n  which the  
displacements, deformations, and angles of ro ta t ion  of the  elements may be so 
great t ha t  an appl icat ion of the  l i n e a r  equations of t he  c l a s s i ca l  theory of 
e l a s t i c i t y  would lead t o  substant ia l  errors.  In such cases, nonlinear equa
t ions  must be used. 

In  determining the  boundaries o f  appl icabi l i ty  of t he  l i n e a r  theory, one 
usually starts out  from the  r a t i o  of the displacements of t he  points  of t h e  
basic  surface of the  she l l  t o  i t s  thickness. This method of c lass i f ica t ion ,  
however, i s  arbi t rary,  since here too  the decis ive influence i s  t h a t  of t he  pre
assigned e r ro r  limits i n  the  solution of the  boundary conditions of  the theory 
of shells.  It may be considered, according t o  A.S.Vol"ir, t h a t  t he  l i n e a r  &Q 
theory i s  applicable if ! < I  : 2h < 1/5, and i s  en t i r e ly  inapplicable i f  : 
: 2h 2 5 (Bibl.4) where 3 i s  the  displacement vector of the  basic  surface of 
the  shell .  

K.Z.Galimov and Kh.M.Nushtary give a d i f f e ren t  approach t o  the  c r i t e r i a  of 
appl icabi l i ty  o f  the  l i n e a r  theory. They dis t inguish weak, medium, and strong 
flexures of the shel l .  

A weak flexure takes  place i f  the following condition i s  sa t i s f i ed  i n  the 
she l l  : 

m a x i 1  << 1 ,  (3.5) 

where Iw'l i s  the  modulus of  the  vector of ro ta t ion  of an a rb i t r a ry  l i n e a r  ele
ment under f lexure of t he  shell .  It i s  found here t h a t ,  f o r  some classes  of 
boundary problems, t he  condition (3.5) i s  s a t i s f i e d  i f  

-P 

max I W J=2h; (3.6a) 

f o r  other  types of boundary problems, the  condition (3.5) leads  t o  the  inequa
t ion  

For a moderate flexure, the  displacement of points  of the  bas i c  surface, by 
modulus, equals or exceeds 2h but i s  considerably smaller than the  o ther  l i n e a r  
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dimensions o f  the  shell .  Here, 

(3.7) 

The re la t ion  (3.7) gives u s  the  r igh t  t o  neglect  quan t i t i e s  of t he  order of
/.'I" by comparison with unity. 

In  a strong flexure, the  displacements, directed along the  normal t o  .the 
basic surface-%, a r e  grea t  Se la t ive  t o  2h and are of the  order L. In t h i s  case, 
likewise, the  quan t i t i e s  I w l 2  will be great. 

The problems related t o  a weak f lexure are described by linear systems of 
equations, while those of moderate and strong flexure belong t o  the  nonlinear 
theory of shells.  If we confine ourselves t o  the  study of e l a s t i c  deformations, , 

then we mus t  impose on the  problems of moderate and strong flexure addi t ional  
r e s t r i c t ions  tha t  ensure t h e  absence of zones of p las t ic i ty .  Finally, these 
r e s t r i c t i o n s  must be connected with methods f o r  t h e  reduction of a three-
dimensional problem of the  theory of e l a s t i c i t y  t o  a two-dimensional problem 
and with spec i f ic  boundary conditions. It i s  d i f f i c u l t  t o  indicate  these re
s t r i c t i o n s  i n  the  general form f o r  extensive classes  of problems. 

Section 4. 	 Application of Tensor Series. Reduction of the  Three- m. 
Dimensional Problem t o  the  Determination o f  an I n f i n i t e_ _ _ ~  

~~Sequence of Functions of a Point o f  t he  Base Area of 
the Shel l  

L e t  us extend t h e  methods applied by Cauchy and Poisson i n  the s t a t i c s  of  
p l a t e s  t o  the  elastodynamic problems of she l l  theory. To br ing out the  funda
mental ideas  of t he  method, l e t  u s  first consider the l i n e a r  equations of  s h e l l  
theory, holding t o  the  exposition adopted by us  in other  work (Bib1,23a, b). We 
w i l l  use expansions in tensor series, which are generalized Poisson and Cauchy 
series. We emphasize t h a t ,  instead of tensor series, expansions in ordinary 
power se r i e s  can a l so  be used (Bib1,23a, b and 26). Ekpansions i n  tensor se
r ies ,  i n  our opinion, have the  following advantages: 

a )  Such expansions lead t o  equations va l id  i n  an arbitrary curvi l inear  sys
t e m  of coordinates, which i s  par t icu lar ly  convenient in solving nonlinear prob
l e m s ;  

b )  Each term in the  approximation formulas i s  a quant i ty  w i t h  a de f in i t e  
geometrical meaning. The l a t t e r  permits a c learer  and more p i c to r i a l  presenta
t i o n  of t h e  meaning of various simplifications of the equations than the use of 
conventional expansions i n  powers of the  coordinate 2. 

Hereafter, we w i l l  consider several  versions of the generalized expansions 
i n  power series.  L e t  u s  make use of eq.(I, 12.3). Assume, neglecting the  
s t r a i n s  in the  shel l ,  t h a t  -. -. -D 

(&)I 5 (Ar)2L0; (Ar)3 z. (4.1) 
9 These displacements are ordinar i ly  called flexural. 
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The sign 2 , here and hereafter,  denotes an equal i ty  t h a t  i s  t r u e  only i n  one 
d e f i n i t e  coordinate+system (a non-invariant equality). The expressions of t he  
vector  components A r  i n  t h e  deformed s h e l l  w i l l  be given below when we discuss  
t h e  nonlinear theory;:. 

Following the  general program of solution of t he  reduction problem (Sec
t i o n  1),l e t  us consider t he  expansions of the strain tensor components i n to  
tensor  series, remembering eq. (4.1): 

where D ( z )  are the  components of  the  s t r a i n  tensor a t  t he  point with the coor
dinate  2 = 8, while D,, a re  the  s t r a i n  tensor components on the  bas ic  surface 
of t he  s h e l l .  

We note that ,  according t o  eq.(I, 12.3), an expression of the  form 

7IZ t i m e s  

i s  t o  be regarded as a component of a covariant tensor  of second rank, and ana 
expression of the  form 

as a component of a covariant vector. 

Let us  assume t h a t  the  tensor of curvature vanishes i n  the Lagrangian sys
tem of coordinates xi associated with the undeformed or deformed shell .  Then, 
according t o  eq.(I, 10.9), we have the  r igh t  t o  change, i n  the multiple covari
an t  derivatives,  t he  sequence of operations o f  d i f fe ren t ia t ion ,  To simplify 
the  calculations, l e t  us  assume t h a t  the  system of coordinate l i n e s  xi (i= 1.2; 
on the  basic  surface coincides with i t s  l i n e s  of curvature. Using eqsD(I,3.6a.) 
- (3,6b), (9.5) and (9 .S ) ,  we f ind the  nonzero Chr is tof fe l  symbols of index 3. 

We have 



or, f o r  z = 0, 

Hereafter, t o  shorten the  forrmlas, we s h a l l  denote the  components o f  t he  
metric tensor on the  bas ic  surface by g,, and a t  an a r b i t r a r y  point  by gt;) 

(3ne more remark: The functions z' are components o f  the  tensor  
T 

(Ar)P(Ar)9... . From eqs.(LL.l) and (h .3 )  it follows t h a t  

.+ e
Vi (Ar)3 =0 ( i s  1, 2). 

Eut 

i n  s p i t e  o f  the  first two re l a t ions  of eqs.(k.l). For t h i s  reason, i n  covari
a n t  d i f fe ren t ia t ion ,  t h e  quan t i t i e s  z canmt  be regarded as constants. 

Bearing i n  mind a l l  t h e t  has been said, we f ind,  in expanded fom, the  ex
? a s i o n s  of  the tensor  components of s m a l l  defomz.tion in tensor  ser ies  i n  
powers of Z.  >Je have 

where 



Substi tuting eqs. (L.5a) - (L.5f) i n to  eqs.(II, Lola) or i n t o  eqs.(II,k.5a)
- (11, 4.33) and re jec t ing  the  norJinear terms, we obtain expansions of t h e  
s t r e s s  tensor  components i n  powers of 2. 

I n  sp i t e  of the  f a c t  t h a t  all the  coeff ic ients  of t he  zm in the  resu l tan t  
expansion are  functions of the  coordinates xi, these expansions do not ye t  
solve the  reduction problem, since they contain a.n i n f i n i t e  set of der ivat ives  
of t he  form &...a,u, or of covariant der ivat ives  V, ...V,uJ . These der iva t ives  
may be regarded a s  new unknown functions subject t o  detemnination. The reduc
t i o n  problem will be solved after eliminating the  der ivat ives  V, ...V3uJ from 
t h e  system of equations of she l l  dynamics. 

Section 5. 	 Reduction of t he  Three-Dimensional Problem t o  the  
Determination of S i x  Functions of a Point of t he  
Base Area of the  Shel l  

We sha l l  show t h a t  the  reduction problem has a de f in i t e  analyt ic  meaning, 
i.e., t h a t  it can be formulated a s  a problem of mathematical physics. Indeed, 
t he  Lam6 equations (11, 5.5b) permit us, as was f i r s t  shown elsewhere (Bib1.23a 
and b) ,  t o  express on the  bas ic  surface the  der ivat ives  V3V3 ...uJ, beginning 
w i t h  the  der ivat ive of second order, i n  terms of the der ivat ivesV3uJ,  of func
t i o n s  o f  uJ ,  and of t he  t?tangential?t der ivat ives  V,V, ...VruJ, i.e., der iva t ives  
with respect t o  the coordinates 2 and 2 of the  bas ic  surface. 
5.5b) we find: 

From eq.(II, 

Further, d i f fe ren t ia t ing  eqs0(5.la) - (5.lb) we obtain 

(i, s= 1, 2). ( 5 . 2 b )  
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Subst i tut ing i n t o  the  resdtant expression the  values of t he  second deriv
ativesV,V,q from eqs.(5.la) - (5.1b), we f ind  the  f i n a l  expressions f o r  t h e  
derivatives:  

(t,s=l, 2). 

Different ia t ing eqs. (5.3a) - (5.3b) and repeating the process o f  elimina
t ing  the  der ivat ives  V, ...V 3 u j ,  beginning with the  der ivat ives  of  second order, 
we can find expressions f o r  t he  der ivat ives  V,...V,uj of a rb i t r a ry  mul t ip l i c i ty  
i n  terms of der ivat ives  containing the  operatorv,  i n  an order not higher than 
the first. By m e a n s  of the  resu l tan t  expressions f o r  the  der ivat ives  ofv,... 
v3uj,  all quan t i t i e s  characterizing the s t ressed and strained s t a t e  o f  t he  
she l l  w i l l  be determined by expansions of the  form of eq~.(1~.5a)- (L1..5f), as 
functions of the  coordinates o f  the basic  surface x i ( i  = 1, 2)  and e x p l i c i t  
functions of the  coordinate x? = z, i f  we b o w  the  six functions xi : xJ and 
V3uJ . Ne sha l l  consider below cer ta in  methods of determining these func- & 
tions, which will be called fundamental. W e  draw the  reader's a t ten t ion  t o  the  
increase i n  the order of  the  time der ivat ives  entering in to  the  equations, i f  
terms containing z4 are introduced in to  the  expansions. 

Section 6. Amlicat ion of the  Smnbolic Nethod 

The reader has probably noticed tha t  t h e  determination of the der ivat ives  
V30 . .V3~J  i n  the  preceding Section, beginning w i t h  der ivat ives  of the second 
order, in terms of quan t i t i e s  determined i n  t h e  in t e rna l  system of coordinates 
of the bas ic  surface and the  der ivat ives  of V3uJ i s  essent ia l ly  an algebraic 
operation, This operation i s  simplified i n  connection w i t h  the Ricci theorem 
and the vanishing of the  curvature tensor. We r e c a l l  t h a t  t h e  Ricci theoren (I, 
Sect.9) permits us  t o  operate with components of the  metric tensor as with con
s tan t  quant i t ies  .incovariant different ia t ion,  while the vanishing of t he  curva
ture  tensor permits u s  t o  vary t h e  sequence of d i f fe ren t ia t ion  in multiple de
rivatives.  These propert ies  of t he  operations employed by u s  permit t he  use, 
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i n  determining the  der iva t ives  V3...V3uj? o f  me symbolic metnoas developea by
A.I.Lurfye?F. Let us  introduce the notation: 

u y  =v,. ..va uj; up)=u,. (6.la)-
n tunesen'=V R..-.V,, Fj; Fj'' =Fp 

times (6.lb) 

The Lame/ equations i n  the  form of eqs.(5.la) - (5,lb) lead t o  the follow
ing re la t ions  : 

( i ,  ~ = l ,2; n=2, 3,...J. ( 6 0 % )  

Equations (6.2a) - (6.2b), i n  a more eas i ly  visualized form than rela- bA 
t i ons  (5.la) - (5.lb), show the  recurrence of the  re la t ions  between the SUC
cessive covariant der iva t ives  with respect t o  Y? t h a t  r e s u l t  from the Lam& equa
tions.  

Ne sha l l  now introduce abbreviated symbols for the  d i f f e r e n t i a l  operators. 
Let 

9 From the works of A.I.Lurfye we here c i t e  t h e  monograph (Bibl.9b) in which 
t h i s  method w a s  applied t o  t h e  theory of equilibrium of  an e l a s t i c  layer. The 
Lurfye method w a s  a lso applied by 1.T.Selezov i n  h i s  d i sser ta t ion  "Study of the  
Propagation of E la s t i c  Waves i n  Plates and Shells" ( I n s t i t u t e  of Mechanics Ukr 
SSR Academy of Sciences, 1961) i n  se t t ing  up the  generalized equations f o r  the  
transverse vibrat ions of plates ,  by the  method developed i n  our own work 
(Bibl. 23a, b ). 
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Ma.=-
A +P 2P gS"vsvs+ 

P a2 - M;at"
(4.3b 1 

The operator N i s  known t o  us  from the  theory of propagation of waves. 
Equations (6.2a) - (6.2b) take t h e  following form: 

(i, s= 1, 2; n = 2 ,  3,...). 

The system of eqs.(6.4a) - (6.4b) may be regarded as a system of algebraic 
equations permitting us  t o  express successively a l l  t he  functions of ~ $ 4  and 
U,b) i n  terms of uJ(d and u / ~ )  ( j  = 1, 2, 3 ) .  We shall not here perform t h i s  
operation of successive elimination. The in i t ia l  s t ep  of t h i s  operation had 
been pointed out i n  the preceding Section. We note, i n  conclusion, the tensor  
propert ies  of the quan t i t i e s  introduced by us, and of eqs.(b.&a) - (6.4b). 

If we consider point  transformations of coordinates on the basic  surface 
of a shel l ,  then with respect t o  these transformations the  quant i t ies  up) (i= 
= 1, 2) a r e  vector components while the quan t i t i e s  uJn) are scalars.  The proof 
of t h i s  asser t ion i s  obvious. The operators introduced by us  can a l so  be re
garded as symbolic tensors  of  various ranks and s t ruc tures  on a se t  of  coordi
nates  xi (i= 1, 2). 

Section 7. 	 Expressions fo r  the " N o m l "  P a r t  o f  t h e  S t r e s s  Tensor. 
The muat ions  Determining the  Fundamental Fun-ctions~~ 

We s h a l l  c a l l  the  s e t  or" components c13 the  normal pa r t  of the s t r e s s  ten
sor. The o ther  components of the  s t r e s s  tensor  form i t s  tangent ia l  part .  It 
i s  easy t o  convince ourselves t h a t  t he  components d3(i= 1, 2) a re  /96
vector  components on the  set of i n t e rna l  coordinates of t he  points  of the  bas ic  
surface, and t h a t  t he  component c~~~ i s  a sca la r  on this set .  

Making use of the  expansions (4.5d) - (4.5f) extended t o  include terms i n  
z3, of the  notations of eqs.(h.la) and (6.1b), and of  Hooke*s l a w  (11, 4.5b), 
we f ind : 



(i, s =  1, 2). 
(7.lb) 

Equations (?.la) and (7.lb) determine the  s t r e s s  tensor  coinponents d i s 
placed t o  the  bas ic  scrface (cf.1. Sect.12). According t o  the Ricci theorem, 
(I, Sect.9), under this p a r a l l e l  displacement, t he  metric tensor  gk i s  trans
formed i n t o  the  metric tensor  on the  bes i c  surface. For t h i s  reason, t he  quan
t i t i e s  g”‘ entering i n t o  eq.(7.15) a r e  contravariant  conponents of t he  metric 
tensor  on the  bas ic  surface. 

To avoid misunderstandings, l e t  us  note the  propert ies  of t he  covariant 
der iva t ives  of ViUJ[n) (i= 1, 2; j = 1, 2, 3). These  der ivat ives ,  as before, 
are determined i n  three-dimensional space. I n  three-dimensional space, t he  
functions oi”uJ(II’ are coinponents of a tensor  of rank n + 1. T h i s ,  according t o  
eq.(I, 9.12), def ines  the  meaning of the  covariant der iva t ives  V,uJ 

To deterxine the  fundamental functions, we make u.se of t he  conditions on 
the  boundary s-arfaces of t he  she l l  (Bib1.23b). On the  boundary surfaces the  
components of the  external  forces  are usual ly  assigned. 

To s e t  f o r t h  t h e  essence of the method, l e t  us conline ourselves t o  the  
case o f  a s h e l l  of constant thickness and l e t  u s  assume t h a t  t he  basic  surface 
coincides with the  middle surface of the  shel l .  Consider the boundary condi
t i ons  (11, 8.2b). Under the  simplifying hypotheses adopted, these conditions 
h i l l  be o f  the  following form: 

A l l  the  quan t i t i e s  enter ing i n t o  eqs.(7.2) are assumed t o  be displaced p a r a l l e l  
t o  themselves on the  bas i c  surface, according t o  previous statements (I, Sect.11 
and 12). 

The ser ies  representing the  components of t he  displacement and stresses 
are assumed t o  converge within the  s h e l l  and on i t s  surface:?. >taking use of  
eqs.(7.la) - (7.lb), we ob ta in  the  following six equations: 

V i U 3  +uy + /2 [d,ugl)+k ,  (vp3+u p )+up’]+ 
(continued ) 

+:- This hypothesis is, as w i l l  be  c lear  from the  contents of Section 2, t h e  mos t  
vulnerable point  of the  reduction method under consideration. 
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(s= 1, 2). 

This system may be replaced by i t s  equivalent: 

m 

. .
m-0' 

To these equations we must associate the re la t ions  (6.4a) - (6.4b). m 
Eliminating from eqs.(?.ha) - (7.l;b) on the  bas i s  of eqs.(6,ka) - (6.kb) 

the  quant i t ies  up) ( f  = 1, 2, 3 ;  n = 2, 3...), we obtain a system of six equa
t ions  i n  six urdmown functions of uJ and u/l) ( j  = l, 2, 3). This system will 
be of an order depending on the  number of terms in the  expansions. In  turn, 
t he  number of terms i n  the  expansions will depend on the  prescribed e r ro r  o f  
t he  wanted resul t .  Consequently, the  order of the  system of equations set up 
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by us may be very higW. 

L e t  u s  return t o  eqsO(7.la) - (7.lb). Making use of eqso(7.La) - (7.hd), 
we f ind 

&+I3 -2 &-l3 + X(+,3+X(--)3 z 
a33 = 2 -+h 

+-1 (9-hzj [AgSSv,ui?+2pupj + . .
2 

( i =  1, 2). 

Equations (7.5a) - (7.31) es tabl ish the  l a w  of d i s t r ibu t ion  o f  the  normal 
D a r t  of  the s t r e s s  tensor  over the  thickness o f  the  shell .  These equations 
hold for the  l i n e a r  problems of the  s t a t i c s  and dynamics of shells::-:$. 

Section 8. 	 Further Development of t he  Classif icat ion of Shel l s  with 
Respect t o  Dynamic Problems 

L e t  us  re turn  t o  the c lass i f ica t ion  of she l l s  i n to  %bin" and %on-thin'l. 
A s  will be c lear  from Sect.3, i n  the she l l  theory the quant i ty  2h i s  usually 
considered a small quant i ty  i f  the  natural  un i t  of l e r g t h  i s  taken as one of 
the charac te r i s t ic  dimensions of the shell .  I n  the  problems of dynamics, such 
an approach t o  t h e  c l a s s i f i ca t ion  of  she l l s  5-s inadequately motivated. 

An analysis  of the  question of the  appl icabi l i ty  limits o f  the  equations 
of t he  c l a s s i ca l  theory of f lexure of p l a t e s  t o  the  solution of the dynamic 
problems was performed by G.I.Petrashen (Biblm3O)+Ess. Although t h i s  work re
la tes  t o  a special  kind of  shel l ,  i t s  r e su l t s  permit general conclusions t h a t  

4s T h i s  i s  a l s o  c l ea r  from a study of the  s t a t i c a l l y  s t ressed and s t ra ined 
states of an e l a s t i c  medium by the method under consideration (cf. Bibl.96). 

$3:-q u a t i o n s  analogous t o  eqs.(7.5a) - (7.B) are presented by us elsewhere 
(Bib1.23b ). Analogous r e l a t ions  were given subsequently by (Bibl.16, Bib1.26), 
and others. 
\I \I ,,

i=-r The fur ther  development of the invest igat ion by Petrashen i s  contained i n  

t he  paper by LOA.Molotkov It%gineering Functions f o r  t he  Vibrations of P la tes  
with Layered Structure", Leningrad Sect. 1nst.Mat. USSR Academy of Sciences, 
Coll. V: IQuestions of Dynamic Theory o f  t he  Propagation of Seismic Wavestt, 
1961. 
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are va l id  f o r  more general  problems 03 the  dymmics of shells.  iie s h a l l  there
fore  b r i e f l y  enunerate h i s  conclusions (Bib1.3C). 

This study was based on a solution, exact within t h e  limits o f  t h e  linear 
theory of e l a s t i c i t y ,  of t he  problem of t he  v ibra t ions  or" a n  unbouqded elastic 
layer under the  ac t ion  o f  a plane and a x i s p e - t r i c  surface load, and a l s o  t h a t  
of  a normal load unir"0rml.y d is t r ibu ted  over a cross  sect ion of  t he  surface 
layer. On t h e  b a s i s  of an vlalysis of  t he  so lu t ions  obtained, Petrashen came 
t o  the  conclusion t h a t  t h e  thickness of a p l a t e  f o r  which the  appl icat ion of 
the  theory or" t h i n  p l a t e s  w a s  s t i l l  possible, depends subs tan t ia l ly  on t h e  pro
p e r t i e s  of the  force  influencing t h e  plate.  

I n  the  first place, the  width of t he  appl icat ion zone of the  load and t h e  
zone of i t s  appreciable va r i a t ion  must corsiderably exceed the  thiclmess of t h e  
pla-Le, and I n  the  second place the  load must vary s lowly .  The l a t t e r  require
ment my be represented by the  inequal i ty  

where T i s  the  durat ion o f  appreciable va r i a t ion  of  the surface load, Id i s  a 
la rge  number, and 

where b-l i s  the  ve loc i ty  o f  propagation of t ransverse e l a s t i c  waves. Conse
quently, T i s  the  durat ion of t he  passage o f  t he  e l a s t i c  transverse wave through 
the  section o f  the  layer, 

?.le my a lso  note the  r e l a t ion  pointed out by Petrashen between t h e  regions 
of the low-frequency spectrum v and the  thickness of  t he  shel l ,  This r e l a t ion  
i s  of  the  fom: 

vbh <( 1. 

Thus, by increasing the  thickness of the  s h e l l  we decrease the  region of fre
,quencies v i n  wi-ich the  approxiirate theory of p la t e s  does not  lead t o  consider
able errors.  It I"ol1oi.r~f r o m  Petrashen's study (Eib1.30) i n  par t icular ,  t h a t  
t he  na tura l  u n i t  o f  length t h a t  can be adopted i s  the  qulantity v-lb-l ,  as will 
be c lear  I ron  eq.(E.3). 

The corresponding length o f  the  s ine w a e ,  as  i s  generally known, i s  ex
pressed by the ecpation 

From t h i s  follows t he  poss ib i l i t y  cf choosing -LJL, i n  solving cer ta in  problems 

OZ the  elastodynamics of shel ls ,  as a na tura l  &it of length. These fac ts ,  /lo0

established by means of analyses of rigorous b u t  p a r t i a l  solut ions of  boundary 
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dynamic problems of t he  theory of  e l a s t i c i ty ,  can undoubtedly be extended with 
only minor changes t o  the  s h e l l  theory. We do not, however, know of  any gen
e r a l  invest igat ions tha t  would permit introducing addi t ional  terms i n t o  the  
equ-ations of the c l a s s i ca l  theory of p l a t e s  and she l l s  so as t o  make the  solu
t ions  of the  generalized equations represent, with suf f ic ien t  accuracy, the  so
lu t ions  of the corresponding boundary conditions of e las t ic i t f l - .  

Apparently, the solut ion of the  approximation equations can with suff i 
c ient  accuracy describe only some pa r t  of the  elastodynamic process studied, 
f o r  example, some de f in i t e  segment of the  frequency spectrum, the  phase or 
group veloci ty  of  waves with dispersion, etc. . For t h i s  reason, t he  divis ion 
of she l l s  i n t o  the  classes  "thin" and %on-thin" must be subordinated from the  
beginning t o  the  problem of studying cer ta in  charac te r i s t ics  of the  dynamic pro
cess. From t h i s  point of view, the  conditions (8.1) - (8.3) determine the  
c l a s s  of t h i n  shel ls ,  depending on the  desired accuracy of the  study of t he  re
sults of perturbing forces  applied t o  them. In  t h i s  connection we note t h a t  it 
i s  a l s o  possible in the  problems of dynamics t o  introduce various natural  units 
o f  length, subordinating them t o  the  fundamental purpose of the subsequent in
vestigation. 

For instance, l e t  us  propose t o  study the  propagation o f  e l a s t i c  waves of 
lengths not l e s s  than &,, i n  an unbounded shel l ,  i.e., i n  a she l l  homeomorphous 
with an unbounded layer. L e t  us  put, according t o  e q ~ ~ ( 3 . 1 )and (8 .4) ,  

Let M be the  number o f  first terms retained i n  the  above-discussed expan
sions and E the  prescribed r e l a t ive  deviation of some charac te r i s t ic  quant i ty  
( f o r  example, of the'phase o r  group veloci ty  of waves with dispersion), deter
mined - on the  bas i s  of the  approximate theory of  she l l s  - from the value of 
this quantity derived from the  equations of the  three-dimensional problem. Then, 
it i s  possible t o  f i n d  

where the  condition (8.5) w i l l  define the  c lass  of t h i n  shells.  

For all types of waves of length sa t i s fy ing  the  inequal i ty  

1 >/ I , ,  (8.7) 

the  she l l  will l ikewise be thin. For other  waves, the  she l l  w i l l  not be thin,  
i.e., the  number of terms retained will not ensure the  necessary accuracy of 

3:- The equation obtained by Petrashen (Bibl.30) on t h e  bas i s  of t he  solutions of 
t he  above-mentioned p a r t i a l  problems of the  e l a s t i c i t y  theory give no general 
answer t o  t he  question posed. 
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solution. 

We r e c a l l  t h a t  the  study of another report  (Bibl.30) w a s  based on an analy
sis of rigorous solut ions f o r  an unbounded e l a s t i c  layer. Consequently, t he  /lo1 
def in i t ion  of t h i n  s h e l l s  indicated here may require substant ia l  additions, or 
even be unsuitzble f o r  solving dynamic boundary problems i n  the  case of bounded 
shel ls .  

The above statements and those i n  Sect.3 lead t o  the  conclusion tha t  there  
e x i s t s  no general c r i t e r ion  t h a t  would permit a c lass i f ica t ion  of s h e l l s  i n t o  
these classes. There i s  a l so  no general na tura l  uni t  of length resu l t ing  from 
the  properties of t he  dynamic processes in shel ls .  In  concrete problems, how
ever, the introduction of a sui tably chosen na tura l  u n i t  of length may prove 
useful. We s h a l l  assume below t h a t  such a physical or geometrical u n i t  has 
been selected and t h a t  t he  qum-tity 2h i s  su f f i c i en t ly  small, i.e., t h a t  the  
conditions (3.1) are sa t i s f ied ,  with the possible replacement of t he  second con
d i t i o n  by the r e l a t ion  (8.3) or (8.4). The use of t he  conditions (3.3) and 
(3.4) i s  likewise possible. 

Section 9. Piethod of Successive Approximations 

Although t h e  system of equations (7.4a) - (7.4d) const i tutes  t he  founda
t i o n  of one of the  possible ana ly t ic  statements of the  problem o f  reduction,the 
complexity of t h i s  system and the absence of a c r i t e r i o n  allowing preliminary 
conclusions as t o  convergence of the  se r i e s  on the  left-hand side of these equa
t ions  forces us  t o  turn  t o  methods tha t  permit solut ion of the problem of re
duction without in tegra t ing  eqs.(7.4a) - (7.4d). Such a method has been given 
by us  elsewhere (Bib1.23a, b). It i s  the  method o f  successive approximations, 
based on the hypothesis t h a t  2h i s  r e l a t ive ly  small. 

To develop the  process of successive approximations, l e t  us make use of 
eqs.(7.4a) and (7 .4~) .  Equations (7,kb) and (7.4d) w i l l  not as yet be applied.
Subsequently, eqs.(7.bb) and (7.4d) will permit us  t o  develop one of the  a l t e r 
nat ive versions of t he  solution of the  reduction problem. If we do not use 
these equations, then auxi l ia ry  equations predetermining the statement of the  
problem must be s e t  up. 

To find the  first ( i n i t i a l )  approximation, l e t  u s  r e j ec t  from eqs.(7.4a) 
and (7.Lc) a l l  terms containing h. Then, 

(i, s =  1, 2). (9.2) 

To find the  next approximation, l e t  us m a k e  use of eqs.(6.4a) - (6.&b), /1C2 
putting n = 2 and n = 3. Determining the f i r s t  approximation f o r  [ui(a)]l, and 
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[I-&‘) 11, we return t o  eqs.(?.4a) and (7.4.~). From these equations, re ta ining
i n  them a l l  terms with the  fac tor  h2, we will f ind tho second approximation of 
t he  bas ic  quant i t ies :  

(9.3) 

(9.4.) 

The process can be continued further.  Applying this method l e t  us  f ind 
ine  n-th approximation f o r  t he  ccmponents e::) . These quant i t ies  w i l l  here
a f t e r  be called [elg ],, (i= 1, 2, 3) .  We have: 

We f ind:  

(9.6a) 

(9.6b) 

EQuations (9.6a) - (9.6b) permit us  t o  derive formulas ref lect ing,  i n  ex
p l i c i t  form, the  deviation of the  proposed she l l  theory from the c lass ica l  the
o ~ f i - .  Equations (9.1) - (9.6b) will hereaf ter  be cal led the  redilction formulas: 

Let us make a preliminary analysis  of the r e l a t ions  obtained. 

1. If there i s  no load on the boundary surfaces of t he  shell ,  then from 
eqs.(9.l) - (9.2) follow the  relat ions:  

These equations express the  condition of invariance of an element of the  
bas ic  surface normal t o  the  middle surface. Thus the  first approximation i s  
close t o  the  Kirchhoff-Love hypothesis, which i s  s t i l l  less r e s t r i c t i v e  f o r  t he  

~~ 

s+ Here we have somewhat modified the  notation adopted by us elsewhere(Bibl.23b). 
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s t r a ins  t h z n  t'his hypothesis. 

2. The nethod of successive approximation given here requires the d i f f e r 
e n t i a b i l i t y  or" t he  functions X ( & l J  and p F J .  

3. We note the  ru les  for covariant d i f f e ren t i a t ion  of the  functions Xi(_+). 
Although these functions a re  essent ia l ly  components of a contravariant vector, 
they nevertheless express, according t o  the reduction formulas, t he  compon- /103 
en ts  of a covariant tensor  of second rank. This determines the  ru les  f o r  t h e i r  
covariant d i f fe ren t ia t ion .  

4. We have not been able t o  es tabl ish a general proof of  the convergence 
of the process o f  successive approximation suggested by US. Elsewhere 
(Eib1.23b) we have indicated methods f o r  the preliminary approach t o  such a 
proof i n  the case of s t a t i c  problems. A s  f o r  the problems of dynamics, t he  
d i f f i c u l t i e s  here are s t i l l  considerable. The question of the convergence o� 
t he  process of successive approximations may be approached i n  the problems of 
s t a t i c s  based on general ana ly t ic  properties of the  solutions of  the boundary 
problems of the  e l a s t i c i t y  theory mentioned i n  Sect.2. It can be asserted tha t ,  
f o r  the cases of t he  act ion of forces  determined by functions of a point with
out analyt ic  s ingular i t ies ,  the se r i e s  constructed by us wi l l  i n  f a c t  converge. 
But these s e r i e s  will apparently diverge in the neighborhood of the points  of 
application of concentrated forces. O f  course, concentrated forces  a re  one of 
the  forms of l imi t ing  abstractions.  It i s  c lear  t h a t  even here we can obtain a 
solution t h a t  i s  s a t i s f s c t o q  from the  physical viewpoint by subst i tut ing the  
concentrated force by i t s  equivalent load, d i s t r ibu ted  over a small but f i n i t e  
region of the  body. 

The ana ly t ic  propert ies  of t he  solutions of dynamic problems of the  elas
t i c i t y  theory as investigated t o  date, do not permit a de f in i t e  answer t o  the  
question whether t he  successive approximations developed by our method ac tua l ly  
converge+. For t h i s  reason, we must consider the proposed method as merely an 
algorithm for obtaining approximate equations of the  dynmics o f  e l a s t i c  shells.  
These equations a re  mbjec t  t o  fur ther  experimental and theore t ica l  ver i f ica
tion. 

There a re  ind i r ec t  confirmations of our methods. For erample, in the  work 
by M.P.Petrenko and t h a t  by I.T.Selezov:+ it i s  shown t h a t  the method under 
discussion permits obtaining equations for the  longitudinal and transverse vi
brat ions of rods and the  transverse vibrat ions of p l a t e s  which yield,  a s  spe
c i a l  cases, the  equations found by other methods and by other  authors. I n  t h i s  
manner, it i s  possible t o  obtain a generalization of t h e  d i f f e r e n t i a l  equation 

3: The s t a t e  of the  general theory of solution of the  problems of elastody
namics i s  indicated i n  V.D.KupradzeTs book ?Boundary Problems of the Theory of 
Vibrations and In tegra l  Equations", Gostekhizdat, 1950. 

x-x- Ci'. the d i s se r t a t ion  by M.P.Petrenko ffLongitudinal and Transverse Vibrations 
Arising i n  Short Rods of Constant and Variable Thickness under the Action of an 
Impact" I n s t i t u t e  of Mechanics, Ukr SSR Academy of Sciences, 1961, and the 
above-cited d i s se r t a t ion  by 1.T.Selezov. 
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of t h e  longitudinal vibrat ions of rods found by S,P.Timoshenko, as well  as var
ious  generalizations of known equations for transverse vibrat ions of plates ,  
f o r  example the  equations given by Ya.S.Uflyand, e t  al. These r e s u l t s  appar-/lGlL 
en t ly  confirm the  expedience of  the method proposed here. 

Returning t o  the  question of the  convergence of t he  above-suggested method 
o f .  successive approximations, it i s  useful t o  c i t e  the  concepts by A.M.Krylov 
on the  convergence i n  purely ana ly t ica l  and applied research+. Obviously, 
rlconvergencefr i s  important here in view of t he  f a c t  that,,  a f t e r  a f i n i t e l y  
s m a l l  number of approximations, it w i l l  y ie ld  su f f i c i en t ly  exact eqcations,i.e., 
equations whose solut ions w i l l  s a t i s fy  the  equations of t h e  mathematical theory 
of e l a s t i c i t y  and the  boundary conditions, with an e r ro r  su f f i c i en t ly  small 
from the  viewpoint or" p rac t i ca l  requirements. 

The study (Bibl.30) on the  c lass ica l  theory of  p la tes  shows t h a t  t h e  
above-mentioned Ifpractical  convergence" will take pla,ce whenever the  res t r ic 
t i ons  indicated i n  Sect.8 a r e  imposed on the act ing forces. The question of 
the  a p p l i c a b i l i t j  limits of the  equations obtained by t h i s  method requires  fur
the r  investigation. 

Section 10. 	Expansion of the  S t ra in  Tensor in to  a Tangential Par t  
and a Rormal P a r t  

L e t  u s  re turn t o  the  expansions (L.5a) - ( b . 5 ~ )  of the components of the 
s t r a i n  tensor ~2;) (i,k = 1, 2). These components were not used by us i n  solv
ing the reduction problems. A s  we sha l l  show, f o r  z = 5 they describe the de
formation of  the  bas ic  surface, i.e., they determine, with an accuracy t o  quan
t i t i e s  of the  second order of' smallness, the  var ia t ions  of  the metric tensor 
components of the basic  surface. They also contain terms dependkg on the var
i a t i o n  oiP the  curvature of the  basic  surrace. 

f z )de w i l l  denote the  s e t  of terms o f  e i k  deterriining the var ia t ion o f  the 
metric tensor Components o f  the basic  surface, as the  tangent ia l  par t  of the 
s t r a i n  tensor. de s h a l l  c a l l  the se t  of i u a n t i t i e s  belonging t o  �2;) and de
pending on t h e  curvature var ia t ion of the bas ic  surface, the normal pa r t  of  the  
s t r a i n  tensor. Let us represent eqs.(&.ra) - (L.5c) i n  the  following form: 

(1O.lb) 
(1G.lc ) 

The quant i t ies  cik form the  tangent ia l  pa r t  of  the  strain tensor. These / lo5 
quant i t ies  are determined by t h e  formulas: 

iell =dlItl -	~ 

1 
'L,%g1,+___ ' L z Q h  -k l g I l 4 ,  ( 1 ~ 2 a )2gn 2g2, 

-% C f .  Wollect ion of Works of Academician A.N.Krylovf', Vol.X, USSR Academy of 
Sciences, 19h8, pp.205-2C6. 
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(10.29 (10.2c) 

The quant i t ies  .%ik a r e  the  components of t he  symmetric covariant tensor  o f  
second rank on the  bas i c  surface. This i s  known as t h e  tensor  of var ia t ions  of 
curvature. The comection between the  quan t i t i e s  .%ik and the  var ia t ions of cur
vature will be c lear  from eq.(l+.2), bearing i n  mind t h a t  t h e  der ivat ives  0, are 
absolute der ivat ives  i n  the  d i rec t ion  of  a normal t o  t he  bas ic  surface and mak
ing use of  eqs.(I, 3;6a) - (I, 3.6b). The quan t i t i e s  t l i k ,  corresponding t o  the  
n-th approxirnation, are determined on the bas i s  of eqs.(4.5a) - (lF.5c) and the  
reduction formulas (9.6a) - (9.6b): 

The terms containing a re  absent from the  equations of the c l a s s i ca l  
theory. They obviously characterize the influence of t h e  loca l  loads on the 
curvature of the shell .  

The re la t ions  (10.2a) - (10 .3~)  const i tute  t he  first (kinematic) group /ld 
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of equations of t he  s h e l l  theory s e t  up on the  c lass ica l  plane. The terms of 
t h e  expansions of e t : )  containing m, where n 2 2, have no special  names and 
t h e i r  geometrical meaning i s  more complicated than t h a t  of c i k  and H i k e  The 
scope of the  present study does not permit u s  t o  go more deeply in to  these kin
ematic investigations. 

Section 11. Two Kethods of Se t t ing  up the  Quat ions  of the Theory of 
~ 

Shells, both Connected with the  Method of Successive Ap
proximations. F i r s t  Version of Establishment of t he  
Gastodynamic Systems of Equations 

The method of successive approximations requires the  use of three equa
t ions  derived from the  system of six equations (7,La) - ('7./+d). I n  essence, 
t ' s  method i s  one of the  methods of eliminating the  three  unknown functions 
I.$ ( i  = 1, 2, 3 )  from the  six unknowns i n  the  system of equations (7,ha) 
(7.4d). To obtain a complete system o f  equations of the  she l l  theory, three 
more equations must be s e t  up with unknown functions u , ( i  = 1, 2, 3) .  This may 
be done by two methods. 

The first method i s  based on the  use of the three equations of the system
(7.4a) - (7.Ld) t h a t  had not been used by u s  i n  deriving the reductiori formulas. 
By eliminating the  quant i t ies  q'" from these equations on the  bas i s  of the re
duction formulas, we obtain a system of three equations with unknown functions 
ul ( i  = 1, 2, 3 ) .  

The second method consis ts  i n  s e t t i n g  up the  conditions of equilibrium of 
m element of  the  s h e l l  as a whole, followed by the  application of re la t ions  re
su l t i ng  from Hookets l a w ,  and i s  the  most widely used i n  modern she l l  theory, 
uld essent ia l ly  corresponds t o  the  construction of the  c l a s s i ca l  theory. 

Consider the elastodynamic system of equations of the  theory of shel ls ,  
derived from eqs.(7.&a) - (7.4d) and from the  reduction formulas, and l e t  us 
r e t a i n  the  first version. F i r s t  we must es tabl ish the r e l a t ive  accuracy of the  
required system of equations. We sha l l  conditionally define t h i s  accuracy by 
t h e  highest power of  h in the  t'erms retained i n  the equations. 

The equations of  the  c l a s s i ca l  theory of she l l s  were usual ly  confined t o  
terms containing h3, but  introduced only some of these terms+$. During the  l as t  
10  or 12 years, a nurriber of s tudies  on the  dynamics of p l a t e s  and cyl indrical  
s h e l l s  have been published, containing terms i n  h3 but  a l so  omitting a number 
of terms of t h i s  order, without giving suf f ic ien t  reasons f o r  the  legitimacy of 
neglecting them. Below, we a l so  confine ourselves t o  s e t t i n g  up the  equa- /lo7
t ions  of she l l  dynamics, containing a l l  terms up t o  and including the  fac tor  kr? 
However, t he  method employed by u s  makes it possible t o  set up equations con
ta in ing  a l l  terms t o  an a rb i t r a ry  power of M*r. 

~ 

x- We have given elsewhere (Bib1.23b) a detai led analysis  of t he  completeness 
of t he  c l a s s i ca l  system of equations of the s t a t i c s  of shells. 

+:*-I n  the  above-cited d i s se r t a t ion  by I.T.Seleeov, t he  equations of t he  vibra
t i o n s  of plates,  containing terms up and including h5, were  set up by this 
method i n  the expanded form. 
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_-
To obtain the  required degree of  accuracy, the  twc f i r s t  terms and t h e  se

ries mist be  retained in the  left-hand s ides  of eqsm(7.Lb) - (7.Ld). Then we 
obtain the  followirig approximtlor, fo;mulas: 

(11.lb ) 

L e t  us make use of t h e  recurrent re la t ions  (&.ha) - (6.1Lb) and the reduc
t ion  formulas, and l e t  u s  ROW mal:e a l l  the calculations w i t h  the  required de
gree of detail. On the b a s i s  of  eqs.(S.lla) - (643) we find successively 
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( i , r , s= 1,2). (11.Lib ) 

Now, applying t h e  reduction fomulas ,  we can exclude the  quant i t ies  uJ[” 
from the resu l tan t  equation. Here, i n  view of t he  prescribed a rb i t r a ry  accur
acy of the equations, we w i l l  introduce the  fi-rst approximations i n  the  expres
sions d3)and u / ~ ) ,w h i l e  the  remaining quant f t ies  entering in to  eqs.(l l . la)  
(1l . lb) can be determined by the  second approximations. 

I n  order t o  execute this program, we must re turn t o  eqs.(9.l) - (9.2) and 
introduce there  our newly adopted notation, and then f ind the  first approxima
t i o n  of the quan t i t i e s  uJ(’), up), uJ(*). Then ,we w i l l  be able t o  write eqs. (9.3) 
- (9 .4)  i n  the  expanded form and complete se t t i ng  up the system of equations 
(1l.la) - (11.1b). From eqs.(6.3a) - (6.3b), we find 

We put 

(11.5) 


(11.6) 

lie have here considered the  remarks i n  Sect.9 on the  meaning of the  functions 

X(*) . Fquations (9.1) - (9.2) then take the  following form: 

Further elementary bu t  unwieldy calculat ions lead t o  the  Pollowing gen- / l C 9  
e r d  expressions of  t he  wanted quant i t ies :  

(Ui2”’jm=( P ( ’ n ) ] m ~ l  +[Qj2”’],; (11.8a )+ [Rl’”)’],,ps 



'1, , ;%(2("31m[si( 2 n - 9 1  m y  ~ I s ( 2 n - 1 )  8 J, areThe expressions [P(2n)]m [q(2n)
d i f f e r e n t i a l  operators depeniing on the  order of approximation. We shall indi
ca te  below the  form of these operators of the  approximations introduced by us. 
The quant i t ies  [QP)],are "force terms" containing the  d i f f e r e n t i a l  operations 
on the  body forces  and surface forces. 

To start with, we ind ica te  the  values of t he  operators i n  eys.(ll.8a) 
(l l .9b) f o r  t he  first approximation. We have 

(i, f ,  s =  1, 2). 

The operators have the  following meaning : 

(1l.lOa) 

(11.lob ) 

(11.1la)  

(11.llb) 

(11.12a) 


(11.123) 


(11.13a) 

( l L l 3 b  ) 



(11 1Lb ) 

(11.1Lc ) 

Quzt ions  (11.1Ga) - (ll.llJd), together with the  re la t ions  (ll.8a) 
(ll.%), determine the  first approximation. 

Let us now consider the  second approximation. To s e t  ~p eqs.( l l . la)  
(1l.lb) with the  necessary accuracy it is su f f i c i en t  t o  consider the  second 
approximations o f  the  quan t i t i e s  u;’) and u12)( j  = 1, 2, 3) .  Again s t a r t i n g  
from eqs.(ll.Sa) - (l109b), we sha l l  give the  values of the d i f f e r e n t i a l  and 
lrforcelr operators contained i n  tne  expressions �or [uJ(l) Iz and Iz . We 
have 

[S1”], =-P L,  -
A*P (11.15~~) 

A 
[P‘*’],=M ;  [Rj:?’ =Li: -+AfpL , N ~ :-



(11.16b ) 

p u t h e r ,  we f ind  the  “force” operators; /111 

(11.18a) 


(11.18b ) 

L e t  us  re turn  t o  eqs , ( l l . l a )  - (1l.lb). Making use of t he  notat ion (11.5) 
we represent these equations i n  the  following form: 

where 

(i, s = 1, 2). 

(11.19a) 


(11.19b ) 

(11.20) 
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(i, s= 1. 2) 
(11.21b) 

Xe sha l l  now make several  preliminary remarks on the  system of equations 
(11.21~~)- (11.21b). 

1. The system of equations (11.21a) - (11.21b) i s  of the  twelfth order.  We 
r e c a l l  t ha t  the  order of the  s y s t e m  of equations i n  the  c l a s s i ca l  theory i s  
eight. The increase i n  the  order of the system i s  due t o  the introduction of 
a l l  terms with f ac to r s  ha up t o  h" inclusive. The order of  the  system of equa
t ions  (11.21a) - (11.21b) i s  lower than the  order o f  the  i n i t i a l  system (11,la) 
- (11.1b). The order of the  in i t ia l  system,as i s  obvious , i s  21. Here the  
higher der ivat ives  i n  eqs.(l l . la)  and (1l.lb) will be mixed der ivat ives  with 
respect t o  t and the  coordinates xi(i= 1, 2). The system of equations (1l.la) 
- (1l . lb) w i l l  be of  the  f i f t een th  order i n  the  der iva t ives  with respect t o  the  
coordinates xi. The lowering of the order of the system as a result of the  ap
p l ica t ion  of the  method of successive approximations i s  due t o  elimination of 
t he  terms containing fac tors  of hn where n 2 1,; . in  introducing the  formulas of 
reduction i n  eqs. (1 l . l a )  - (11.1b). 

2. The system of  equations (11.21a) - (11.21b) approximately describes the  
dynamic process i n  e l a s t i c  s h e l l s  of a r b i t r a r y  form. A s  we have already noted, 
these equations contain a l l  terms with f ac to r s  P where n S 3. Neglecting the  
remaining terms na tura l ly  limits the significance of t he  derived equations. 
This f a c t  will become obvious when considering the  boundary and ini t ia l  condi
tions. 

3 .  The system of equations (11.21a) - (11.21b) "symbolicallyfr i s  resolved 
in to  a system of two equations containing the  tangent ia l  components of  the  d is 
placement vector and an equation with the  nomtal component. This resolution, 
however, i s  i l l u s o r y  since the  covariant derivatives,  forming the  bas i s  of t he  
operators introduced by u s  t o  shorten the  notation, are sets containing all com-



3 

ponents of the  vector  u. Only i n  the  plane problem i s  t h i s  resolut ion ac tua l ly  
accomplished. 

4.. The system of equations (11.21a) - (11.21b) contains the wave opera
t o r s  14. However, the  question of the  existence of the  ac tua l  charac te r i s t ics  
of eqs. (11.21a) - (11.21b) requires  separate analysis. 

5. The system of equations (11.21a) - (11.21b) obtained by 'our  ana ly t ic  
methods i s  very complex and permits only approx5mate integrat ion,  neglecting a 
number of terms. It seems useful,  however, t o  introduce such a s y s t e m  i n t o  the  
arsenal  of descr ipt ive means of the  theory of s h e l l s  as a peculiar ttstagert, /ll3
permitting us  t o  judge the  accuracy of the equations obtained by .other, more 
p i c t o r i a l  method 9:. 

Equations (11.21a) - (11.21b) do not define the  statement of the dynamic 
boundary conditions of the  s h e l l  theory. The boundary and i n i t i a l  conditions 
must be considered. In  order t o  do th i s ,  we must first f ind approximation ex
pressions f o r  the  stress tensor components. 

Section 12. 	Approximate Ekpressions f o r  the  Components of the Displacement 
Vector and the Components o f  the  S t r e s s  Tensor-

In considering the  expansions of  the displacement vector components, the 
question a r i s e s  a s  t o  the number of terms tha t  must be retained i n  these expan
sions. 

Based on the  r e l a t ive  accuracy of eqs.(ll.2la) - (11.21b), we will r e t a in  
i n  the  expansions o f  the  displacement vector components a l l  terms including com
ponents with fac tors  z3. Here, however, we have a cer ta in  inconsistency, since 
eqs.(l l .2la) - (11.21b) contain terms depending on coef f ic ien ts  of z4 in the  
expansions o f  the  displacement vector components. This'inconsistency, however, 
i s  apparently one of  several  contradictions of the  theory under consideration. 
Below, we will discuss  the contradictions i n  the  approximate theory of she l l s  i n  
more de ta i l .  I n  the  notation adopted by us  we f ind 

(i= 1, 2, 3). (12.1) 

Making use of the  r e l a t ions  (11.8a) - (11.9b), we obtain 

~ 

+? The d e s i r a b i l i t y  of invest igat ions t o  obtain a r b i t r a r i l y  "exact" equations of 
t h e  she l l  theory, permitting a judgment from the  propert ies  of the  rejected 
terms, w a s  discussed at the Conference on Shel l  Theory held i n  October 1960 at 
Kazanf . 
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Consider the  expansions of  t he  stress tensor components. Introducing /11L 
t he  notat ion of  eq.(11.5), we f ind 



Equations (11.8a) - ( lL9b) ,  together with t h e  values of  t h e i r  operators 
expressed by eqs. (1l.lOa) - (11.18b), permit the  approximate r epesen ta t ion  of 
tne  stress tensor  components in a form analogous t o  eqs0(12.2a) - (12.213). We 
sha l l  not write out these expressions i n  view of t h e i r  great  length. With re
spect t o  the  expressions found by us f o r  t he  components of the  displacement vec
t o r  and of the  stress tensor, we may remark t h a t  they contain terms depending 
on the  acceleration of an element of t he  shell .  These terms wi l l  hereaf ter  be 
designated “inertialrv.  

The presence of i n e r t i a l  terms dis t inguishes  our approximation expressions 
f o r  the displacement vector components and t h e  stress tensor  from the  expres
sions known from the  c l a s s i ca l  theory. It i s  obvious t h a t  these expressions /Wj 
contain a number of non-inertial terms, which are a l so  absent from the rela
t i ons  of t he  c l a s s i ca l  theory. 

Section 13. Boundary Conditions 

The equations o f  motion of an element of the s h e l l  were obtained by us  
from the  equations of motion of a three-dimensional body. It was  natural  a t  
first s ight  t o  turn  t o  the  boundary conditions of the  three-dimensional problem 
o f  the  theory of e l a s t i c i t y  t o  obtain the boundary conditions of the  theory of 
shells.  This i s  exact ly  what we did. Consider two fundamental boundary prob
l e m s .  In  the first problem the displacements on t h e  contour surface a re  pre
scribed and, i n  the  second problem, the  stresses (11, Sect.8). The contour 
surface w i l l  be 2na ly t ica l ly  detemnined by the  following conditions imposed on 
the  u n i t  vector n of t h e  external normal: 

1. The F i r s t  Boundary Condition 

On the  contour surface C, l e t  the  displacements 

(rt);L))c=cp, ( X I ,  2, t) (i=1, 2, 3; j =1, 2). (13.2) 

b e  prescribed. Expanding the  prescribed displacements i n  tensor s e r i e s  i n  
powers of z, we f ind  

(UP)), =81( X I ,  0, t )+zcpl” (x’, 0,t )+r
2 

.2cp5*’ (x’, 0, t)+ 

Equating the  first four terms of the expansion (13.3) t o  the first four terms 
2 f  the  expansions (12.2a) - (12.3b), we f ind 
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where C i s  an a r c  of the  contour of t h e  bas ic  surface of the  shel l ,  The condi
t i ons  (13.4a) - (13.4.b) were obtained by us as a r e s u l t  of a formal operation. 
The t o t a l  number of these conditions i s  twelve. 

We have two remarks t o  make on the  conditions (13.4a) - (13.4b). m 
1. The compatibility o f  t he  conditions (13.4a) - (13.4b) with eqs . ( l l02 la)  

- (11.22b) i s  not obvious. Apparently some of these conditions (13.4a) 
(13.4b) cannot be sa t i s f i ed  by solut ions of the system of equations (11.21a) 
(11.21b). 
twelve. I f  we r e c a l l  t h a t  the  solution of a p a r t i a l  d i f f e r e n t i a l  equation of 

In  fac t ,  the  order of  the s y s t e m  of equations (11.21a) - (11.2lb) is 

second order permits s a t i s f ac t ion  o f  one boundary condition+, while the  solu
t i o n  o f  a biharmonic equation satisfies two boundary conditions, then the  solu
t ions  of the system of equations (11.21a) - (11.21b) must s a t i s f y  six boundary 
conditions. In  other  words. we sha l l  have t o  confine ourselves t o  two terms i n  
the  expansions (13.3) and aicordingly t o  two terms in the expansions (12,2a) 
(12.2b ). 

Obviously, the  arguments presented here a re  not rigorous. The mentioned 
questions require special  investigation. We sha l l  re turn t o  them l a t e r .  

2. I n  problems of the  s h e l l  theory, the  functions cp(xj, z, t )  are  usual ly  
not prescribed but  it i s  required t o  sa t i s fy ,  by conditions imposed on the  
wanted functions, weaker r e s t r i c t i o n s  on the  contour of the  basic  surface. Thus, 
the  above-mentioned d i f f i c u l t i e s  do not arise i n  practice.  

2. 	 Second EoundaSy Problem 

Let us  a s m e  tha t ,  on the  contour surface, the stress vector 

i s  prescribed. Ekpanding this vector i n  a tensor  Taylor+%eries i n  powers of z, 

35 The Dir ich le t  and PJeumann problems are examples. 

-H-W e  r e c a l l  t h a t  an expansion i n  a tensor  power series br ings about t he  opera
t i o n  of p a r a l l e l  displacement i n  the  Levi-Civita sense. 
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we find 

L e t  us now make use of eq.(II, $.a): 

where O i k  and $+are, respectively, the components of the  s t r e s s  tensor and of  
the  uni t  vector n of the ex te r io r  normal t o  the  contour surface, displaced par
a l l e l  t o  themselves on the  bas ic  surface of  the  s h e l l  along the normal t o  t h i s  
surface. /117 

The p a r a l l e l  displacement of the  stress tensor  i s  accomplished by expand-_, 
ing i t s  component,s i n  tensor  series.  The p a r a l l e l  displacement of the  vector n 
i s  performed on the  basis of previous statements 11, Sect.11). The poss ib i l i ty  
of a separate displacement of the  s t r e s s  tensor  2~ and the  vector r e su l t s  
from the fundamental propert ies  of t h e  operation o f  pa ra l l e l  displacement i n  
the  Levi-Civita sense (I, Sect.10). 

It follows from (I, 11.13) t h a t  t he  r e l a t ions  (13.1) remain val id  for the  
displaced vector z. The remaining components of the displaced vector are  de
termined by equations resu l t ing  from (I, 11.13) and (I, 11.18): 

(i = 1, 2; do not sum over i1). 
Here, ni a r e  the  components of the  u n i t  vector t o  the contour surface a t  the  
point of ' the  she l l  with the  coordinate 2 = z. 

l e a dLet us expand ntZ, i n  a Taylor s e r i e s  i n  powers of Z. Then e q ~ ~ ( 1 3 . 6 )  
t o  the  following expressions : 

To s e t  up t h e  boundary conditions we must bear i n  mind eqs.(a) and the ex
pansions (12.3a) - (12.3c), eq.(13.5), and f".iLa (13.7). We have 

In  the  expanded form, these equations a f t e r  equating the coeff ic ients  of 
equal powers of z on the  l e f t  and right-hand s ides  lead t o  the following system 
of boundary conditions: 
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( p = O , l , 2 , 3 ;  i , j , r , s = l , 2 ) .  

The select ion of the  approximation m i s  so performed tha t ,  i n  the  condi
t i ons  (13.8), no terms of t he  'rorderlt h4 will enter. The orders  of h and z are 
taken t o  be the same-::. We assume t h a t  us'")= us. The summation over r i s  de-&g 
noted by the  usual convention. 

The system of re la t ions  (13.9a) - (13.9b) contains twelve conditions. The 
above remark 1, on the  number o f  conditions of the  boundary problems of she l l  
theory i n  our formulation, a l so  appl ies  here. 

The question as t o  the  number and meaning of t h e  boundary conditions i n  
s h e l l  theory i s  not new. Over a hundred years ago there  w a s  a discussion be
tween the followers of Poisson's theory, according t o  whom f i v e  force condi
t i ons  had t o  be sa t i s f i ed  on the  contour of the cent ra l  plane or middle surface 
o f  a plate,  and adherents o f  the  theory of  Kirchhoff, who asserted t h a t  the  
number of these conditions did not exceed four. The Kirchhoff theory, using 
the  well-known simplifying static-geometrical hypotheses, i s  generally recog
nized a t  the  present time. The impossibi l i ty  of sa t i s fy ing  a l l  the boundary 
conditions of the  f i r s t  or second boundary problems of s h e l l  theory na tura l ly  
leads t o  the  idea tha t  there  must be some in te rna l  contradiction i n  the theory 
developed by us  a s  a whole. 

Indeed, the accuracy of the boundary condition t h a t  can be sa t i s f i ed  will 
be lower than the  accuracy of t he  system of equations (11.21a) - (11.21b),which 
na tura l ly  r a i se s  the  question whether these equations a re  not excessively ac
curate and unjus t i f iab ly  complex. 

It is, however, easy t o  prove t h a t  t he  theory developed here contains no 
log ica l  contradictions. We sha l l  re turn l a t e r  t o  i t s  evaluation. However, 
these and similar questions encourage the  study of o ther  ana ly t ica l  approaches 
t o  the mathematical descr ipt ion o f  the  stressed and s t ra ined s t a t e  of shells.  
One of them 5s based on the  use of the  var ia t iona l  pr inciples  of the  mechanics 
of e l a s t i c  bodies+:-:$. Me sha l l  make use of this method later, and s h a l l  then 

$5 In  other  words, terms with f ac to r s  haan, where m + n > 3 ,  must not en ter  in
t o  the  equations. 

-x% V.V.Bolotin has called our a t ten t ion  t o  the advantage of making extensive 
u s e  of var ia t iona l  methods i n  t h e  general theory of shells.  
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re turn  t o  the general, ana lys i s  of t he  formulation of t he  boundary problems of 
the dynamics of shells.  

Section 14. 	 I n i t i a l  Conditions. General Remarks on the  F i r s t  
Version of the  Solution of the  Problem o f  Reduction 

To complete our br i e f  ou t l ine  of t he  general formulation of the dyramic 
boundary problems of the theory of s h e l l s  i n  the  first version, l e t  us  consider 
the i n i t i a l  conditions. We s h a l l  s tart  out from the  in i t ia l  conditions of the 
dynamics of a three-dimensional e l a s t i c  body (11, $.la-b). Let 

%o ( X i )  =si (x’, 2); uio =8, (x’, 2). (14.1) 

m a n d i n g  these vectors i n  tensor s e r i e s  i n  powers 01 z, we f ind m 

Making use of the  expansions (12.2a) - (12.2b), we f ind  the  following ini
t i a l  conditions: 
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In  a l l ,  twenty-four i n i t i a l  conditions (14.3a) - (14.3d) must be sans
fied.  From the  expressions f o r  t he  operators ( 1 1 , l O a )  - ( l l .Ub) ,  it i s  c l ea r  
t h a t  the  system of equations (11.21a) - (11.21b) i s  of t he  order twelve with 
respect t o  the  t i m e  t. Each of t he  equations (11.21a) - (11.21b) i s  of the  
fourth order i n  t, containing the  wave operator X2. It i s  c lear  from t h i s  t h a t  
the solutions of t h e  system of equations (11.21a) - (11.21b) can s a t i s f y  only 
twelve i n i t i a l  conditions. The remaining twelve conditions w i l l  not be satis
fied.  Consequently, the  solut ions of t he  system (11.21a) - (11.21b) cannot, 
with the  accuracy prescribed by us, i.e., with an accuracy t o  terms o f  t he  !!or
der" h3, describe t h e  i n i t i a l  d i s t r ibu t ion  of the displacements and veloci- /120 
t i e s  i n  the shell+. Obviously, even i n  future  motion, t he  solutions of the  
system of equations (11.21a) - (11.21b) w i l l  not describe tne f i e l d s  of dis
placements and ve loc i t i e s  with the  required accuracy. 

A l l  t h i s  forces  u s  t o  conclude t h a t  s a t i s f ac t ion  of the  boundary and in i 
t i a l  conditions with an accuracy t o  terms of t he  '!order'* h" i s  possible only i f  
the  order of this system of equations (11.21a) - (11.21b) i s  increased, which 
can be accomplished by introducing in to  these equations terms with fac tors  h*, 
h5, h6, and h7, The system of equations (11.21a) - (11.21b) with terms t o  the 
"ordertt h3 inclusive may be usefu l  i n  the  study of dynamic processes t h a t  do 
not require rigorous sa t i s f ac t ion  of the  i n i t i a l  and boundary conditions. These 
problems include the  problem of the  propagation of perturbations i n  unbounded 
rods, p l a t e s  and shel ls ,  the  problem of l o c a l  and very b r i e f  influences caused 
by impact, etc. 

This method permits obtaining eq;. (11.21a) - (11.21b) tha t  contain terms 
which can be interpreted t o  be a r e s u l t  of the  influence of shear s t resses  02:)
and of the  i n e r t i a  of ro ta t ion  of an element of t h e  shell's*. The appearance of 
these terms i n  eqs . ( l l02la)  - (11.21b) involves none of the  kinetic-geometrical 
hypotheses t h a t  have been introduced i n  a number of modern works, but  ils in
stead the r e s u l t  of t he  ana ly t ic  construction of eqs.(ll.2la) - (11.21b). 

To summarize, it may be said tha t  the  above method of expansion i n  s e r i e s  
corresponding t o  the  bes t  approximation of t he  required functions !!at a point" 
permits u s  t o  construct+ssc a log ica l ly  non-contradictory technique f o r  reducing 
the  three-dimensional problems of the  theory of e l a s t i c i t y  t o  two-dimensional 

if In the  absence of surface forces, eqs0( l l .2 la )  - (11.21b) w i l l  contain 
terms with the  f ac to r s  ho and h2 

M See, f o r  instance, the above- si.ted d i s se r t a t ions  by 14.P.Petrenko and 
1.T.Selezov. 

_ _~ ~ ' ~ ' ~.# \,>,- The optimum representation of "in-the-meantl function-. -.qd i t s  applicatfon 
t o  she l l  theory w i l l  be discussed l a t e r .  
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problems. 

We note two shortcomings of the  method. 

1. The sa t i s fac t ion  of boundary and i n i t i a l  conditions with a prescribed 
accuracy by convention requires  a r e l a t ive ly  high accuracy of eqs. (11.21a) 
(11.21b). For example, t o  satisfy the  boundary and i n i t i a l  conditions with an 
accuracy t o  terms containing fac tors  of the  order of z3 reqi!.ires us  t o  re ta in  
terms with fac tors  up t o  h' inclusive,  i n  eqs . ( l l02 la)  - (11.21b). This short
coming i s  i n  pa r t  due t o  the  i t e r a t i o n  process employed by us, which lowers the 
order of the system of equations (7.La) - (7.4d). However, as will be clear  
from the  concluding remaz-ks t o  Section 11, the  order of  the  system o f  equatior!
(7.ka) - (7.4d) i s  also insuf f ic ien t  t o  s a t i s f y  the  boundary and i n i t i a l  con-/121 
d i t i ons  with an a rb i t r a ry  accuracy equal t o  the  a rb i t r a ry  accuracy of  these 
equations. 

Consequently, r e l a t ive ly  s l i gh t  e r rors  i n  the  preliminary de5ermination of 
t he  s t r e s s  tensor components oi3 lead t o  grea te r  e r ro r s  i n  the subsequent de
termination of the  f i e l d s  of displacement, the  veloci ty  of displacement, and 
the  s t r e s s  tensor  a s  a whole. 

The index o f  v a r i a b i l i t y  i s  o f  considerable significance i n  the  problem of  
s e t t i ng  up approximation formulas tha t  describe k ine t i c  phenomena i n  she l l s  
with suf f ic ien t  accuracy (Bibl.5, 27, 29). According t o  mother  author(E'ibl.27) 
we may assume t h a t  neglecting the  terms tha t  contain the  fac tor  hn w i l l  in t ro

+lT
duce an e r ro r  of t h e  order o f a n ,  where r i s  the  index of var iab i l i ty ,  ar!d a 

i s  a dimension charac te r i s t ic  f o r  the  basic  surface of t he  shel l .  But the qv.es
t i on  of evaluating the  error  may become more complicated when we consider the 
solutions of  refined equations. This i s  confirmed by the  existence o f  boundary 
e f f ec t s  of new types, discovered on an analysis  of the solution of the refined 
s t a t i c a l  equations given by E.Reissner (Bibl. 20a). 

Questions connected w i t h  the characterization of  the  accuracy or" approx
imate dynamic equations by means of the index of v a r i a b i l i t y  a re  s t i l l  i n  the 
stage of study, and we s h a l l  not consider them here.". 

2. The system of equations (11.21a) - (11.21b) i s  very complicated. It i s  
en t i r e ly  possible t h a t  there  ex i s t  s implif icat ions o f  t h i s  system, which have 
only a negl igible  e f f ec t  on the f i e l d s  of displacement and s t ress .  The method 
employed gives no answer t o  t h i s  question. 

L e t  us  pass now t o  other  methods of  solving the  reduction problem and of  
formulating the  dynamic boundaqy problem o f  s h e l l  theory. 

x- The s t a tus  of the problem a t  the  present time i s  given by another author 
(Bibl.2Clb). The complexity of the  problem i s  increased by the introduction of 
i n e r t i a l  terms in to  the  boundary conditions, when ce r t a in  methods of reduction 
a re  used. 
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Section 15. 	ApFlicatior, of the  General Bua t ion  OZ D~mamicst o  the 
Solutio3 of t h e  Problem of Reduction 

Let, us make use of the  general equation of dynamics, s e t  up with respect 
t o  the  motion of  an e l a s t i c  body:>: 

(15.1) 

where Xi a re  the  forces  act ing on the surface S on the  body, and 6k i s  the  ele
x e n t a v  wo& of  deformation defined by (11, 11.1). The other  notations a re  �a
rniliar. 

iJe r e c z l l  t ha t  eq.(15.1) includes a l l  the  forms of the  equation of mo- /122 
t ion 01 an e l a s t i c  body. Qua t ion  (15.1) y ie lds  the solution of the  reduction 
problein and mkes  it possible t o  Tormulate the  dTynamic boundary problems of the  
theory of shells.  The fundamental method of reduction resu l t ing  from eq.(15.1) 
i s  an approxima-Lion o f  t he  components of the  displacement vector and the s t r e s s  
tensor  by f i n i t e  sums of functions of the coordinate z, selected i n  a de f in i t e  
1,.ray and having coeff ic ients  depending on the i n t e r i o r  coorclinates xj of the 
bas ic  surfa.ce of  the  shell .  

This scheme includes most of the methods known today f o r  solving the prob
lem of reduction of  a three-dimensional problem of the  theory of e l a s t i c i t y  t o  
a two-dimensional problem. An exception i s  the method considered i n  the l as t  
few Sections, since it does not involve an integrat ion of  approximation func
t ions  over the  coordinate Z.  

The poss ib i l i t y  of applying the general equation of  d;mamics t o  the solu
t ion  o f  the problem of reducing the three-dimensional s t a t i c  problem of the  
theory of e l a s t i c i t y  t o  a two-dimensional problem of  the  theory of she l l s  has 
been noted by V.Z .Vlasov i n  h i s  monograph (Eibl.3a). Kh.M.Nushtari and 1.G.Te
regulov discuss this problem i n  the  nonlinear forrmilation i n  great  d e t a i l  
(Bibl. 27 ). 

The method of reduction indicated in a monograph (Bibl.3a) d i f f e r s  from 
the  method used i n  mother  paper (Bib1.27) as w e l l  a s  f r o m  t h e  method developed 
by us  below, i n  t h a t  it i s  less general. 
>ai l  i n  Section 30. 

We compare these methods i n  more de-

Consider i n  succession the  quant i t ies  entering in to  eq.(15.1). The ele
nent of volume dV and the  element of area dS(*].of the  boundary surfaces of the  
s h e l l  a r e  expressed by the  following equations. 

-% Cf., �or example, L.S.Leybenzon, Collection of Works, Vol.1, pp.193-194. USSR 
.Acadeq of Sciences, 1951. 
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We confine ourselves here t o  the consideration of s h e l l s  of constant thick
ness 2h. The r e l a t ions  (I, 2.6b) and (I, 3.6a'- 3.6b) are used here (Bib1.13). 
The element of area dSC of the  contour surface C i s  defined by the  equation 

a r e  the  parametric equations o f  the  contour of the  bas ic  surface of the shel l .  
Since we will make use of segments of  tensor power ser ies ,  which approximately 
determine the vector u, , t he  var ia t ions  h i ,  and the  stress tensor dk on the  
bas ic  surface, we sha l l  displace the vectors pF, and X, t o  t he  bas ic  surface, 
using the operators of pa ra l l e l  displacement (I, 11.20). To avoid complicating 
the  formulas, we s h a l l  r e t a in  the previous notat ion f o r  t he  displaced pFI a n d m  
X,. We put fur ther  

uY)= U,+ZU:')+-1 z@) +-1 ~ 3 ~ 1 ~ )+.... (15.5)
2 31 

The quant i t j  2s q('), up),  uy'. .. a re  the  generalized coordinates o f  the  
shel l .  

We shall- hereaf ter  confine ourselves t o  t h e  same conditional accuracy 
adopted by us  i n  considering the f i r s t  version of the  solution of the reduction 
problem. In  view of the  f a c t  t h a t  eq.(15.5) determines the  vector dis
placed t o  the basic  surface, we find 

(do not sum over i I ) .  

Consider now 6A. By (11, 11.1) we have+:-

Let us now take up the  transformation of the sum 

WZ'
=a;; SOL). 

x- Cf. a lso the  above-cited work by L.S.Leybenzon. 
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Bearing i n  mind the  commutativity of t he  operations of  var ia t ions  and covariant 
d i f fe ren t ia t ion ,  

6V’U!”) =Vi6U6“), (15.9) 

we obtain 
6w‘z’=-1 a‘,)iA (visut’+Vk6UF))=a;;) V i 6 U t ’ .  (15.lo)2 

We find, further,  

sW‘z’ =6W+Z6W‘” +-1 z26w(2)+-1 z36w(3)+...= 
2 31 

The coeff ic ients  ait!, o f  the  expansions of  the s t r e s s  tensor i n  powers of  z 
.have the  following meaning : 

Here, 

(15.13) 
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a re  the  components of the  stress tensor on the  bas ic  surface. 

To prepare all t h e  summands entering i n t o  t h e  var ia t iona l  equation (15.1) 

f o r  the  forthcoming transformation, l e t  u s  consider the  sum-	a 2 q  W ,  re ta in ing  
at2 

i n  it a l l  t e m s  up t o  terms with the f ac to r  z3 inclusive.  Making use of  
e q ~ ~ ( 1 5 . 5 )- (15.6), we f ind 

(15.14) 

Di f fe ren t ia t ion  w i t h  respect t o  time i s  denoted here and hereaf ter  by tremas. 

Now l e t  us subs t i t u t e  the expressions (15.3), (15..L), (15.6), (15.11), and 
(15. lh)  i n to  the var ia t iona l  equation (15.1). L e t  us in t eg ra t e  over zy under 
the  assumption t h a t  the  bas ic  surface coincides with the  cent ra l  plane of t h e m  
she l l ,  and confining ourselves t o  summands with the  f ac to r s  h, h2y and h" . inle 
introduce the notat ion 

Here we made u s e  of eq.(15.4). The components of the s t r e s s  vector X, can 
be expressed, i f  convenient, i n  terms of the s t r e s s  tensor  by eqs.(l3.E). 

We r e c a l l  again t h a t  when we apply the general equation of dyr" ics ,  a l l  
vectors  of forces  a r e  first displaced t o  the bas ic  surface by means of the  op
e ra to r s  of p a r a l l e l  displacement (I, 11.22). The quan t i t i e s  4caJiand S ( a )  * 
a r e  the respective generalized forces  on the bas ic  and contour surfaces corre
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sponding t o  the  generalized coordinates ui‘f . 
After several  transformations and application o f  the  Ostrogradskiy-Gauss . 

theorem, the  general equation of dynamics (15.1) takes  t h e  following approxi
mate fornr;:t: 

45 Ne write out t h i s  equation, re ta ining terms up t o  the “order” h3 inclusive,  
i n  the semi-developed form, t o  make the  book eas i e r  t o  read. O f  course, it i s  
qui te  simple t o  shorten the  notation here. 
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(i, k = 1, 2). 
(15.16 ) 

where w i s  the area. o f  the basic  (middle) surface, and C i s  the contour or" the  
rniddle surface. The element o f  area dw and the element of a r c  dsC of the con
tour  of the middle surface, based on the  re la t ion  (15.4), a re  expressed as f o l 
lows : 

The var ia t iona l  equation (15.16 ) yie lds  a system of  approximation equa
t ions  f o r  the  vibrat ions o f  a shel l ,  together with the boundary conditions. 

Section 16. Differen t ia l  Fiquations of the Osci l la t ions of a Shel l- /127 
Assume tha t  the only constraints  inyosed on the she l l  a r e  on the  contour 

surface. Then, the  var ia t ions  &up)i n  the region u: a re  a rb i t r a ry  independent 
quant i t ies ,  and from t h e i r  var ia t iona l  equation (15.16) follows the  vanishing 
o f  the coeff ic ients  of these variations.  FQuating these coeff ic ients  t o  zero, 
we obtain the following s y s t e m  of d i f f e r e n t i a l  equztions: 
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- 

(16 .2a) 

2h3 . . ( I )  2h3 
-3 pa3 --3 p (k,+k,) k3+ 

+2h3 
-
3 

Vi  (k,+ka)ai3 +-3 
1 

h3(0:) -2Vi at:)) -Q(*) =0; ( 1 6 . ~ ~ )  

(16.4a) 

Thus, from the  var ia t iona l  equation (15.1), with the  accuracy of approxi
mation adopted by us, we obtained a system of twelve equations which, taken to
gether with the  r e l a t ions  (15.12a) - (l5.l2c), determine twelve unknown func
t ions  q@) (m = 0, 1, 2, 3; i = 1, 2, 3). Let us make a b r i e f  analysis  of /128
t h i s  system. 

1. Equations (16.4a) - (16.4b) permit a d i r ec t  determination of the  "nor
m a l  part" of the s t r e s s  tensor. W e  know from the first version of the solution 
o f  t he  reduction problem t h a t  the  determination of d3( i= 1, 2, 3 )  i s  suf f i 
c ien t  f o r  i t s  solution i f  we have recourse t o  the Lame/ equations. 

The mechanical meaning of eqs.(16.4a) - (16.kb) i s  t h a t  they express one 
of the  generalizations of the  Kirchhoff-Love hypothesis. In  fac t ,  i f  Q(3) = 
- Q ( 3 ) 3  = 0, then it follows from eqs.(16.4a) - (l6.4b) t h a t  

&3 =a3R =0 (k= 1 ,  2). (16.5) 

O f  course, the r e l a t ions  (16.5) are  l e s s  accurate than the  expressions 
(7.5a) - (7.5b). Nevertheless, the  f ac t  of a d i r e c t  donnection between the  
Kirchhoff-Love 11hy-pothesis17and the  approximation equations of motion resu l t ing  
from the var ia t iona l  equation (15.1) deserves attention. It may be s ta ted t h a t  
the  Kirchhoff-Love ??hypotheses" are a simple ana ly t ic  consequence of the  condi
t i ona l  and prescribed accuracy f o r  the equations of t he  two-dimensional problerr 
of the  theory of e l a s t i c i t y  and f o r  the  special  hypotheses about the  forces  
act ing on the  shell .  



2. Bearing i n  mind eqs.(l5.l2a) - (15.12c), we can f ind the  order of  t he  
system of equations s e t , u p  by us, including eqs.(16./+a) - (16.kb) i n  t h i s  sys
t e m ,  a u a t i o n s  (16.la) - (16.3b) are equations of t h e  second order i n  deriva
t i v e s  of the  unknown functions with respect t o  the  coordinates x i ( i  = 1, 2) and 
t o  the  time t. Equations ( 1 6 , b )  - (16.Ib) are equations of the first order i n  
der ivat ives  w i t h  respect t o  the  coordinates. Time der iva t ives  do not en ter  in
t o  these equations. consequently, we have obtained a system of the twelf th  or
der  i n  der ivat ives  with respect t o  the  coordinates, and of the eighteenth order 
i n  der ivat ives  with respect t o  time. 

Ne r eca l l  t h a t  the  system of  equations (7.La) - (7.4d) i s  a system of the  
twenty-first order and the  system of equations (11.21a) - (11.21b) a system o f  
t he  twelfth order. The mixed der ivat ives  w i t h  respect t o  the coordinates and 
t o  time belong t o  the  highest order with respect t o  t he  der ivat ives  entering 
i n t o  eqs.(7.1La) - (7.Ld). Mixed der ivat ives  of  t h i s  type do not en ter  i n t o  
eqs. (16.1~~)- (16.4b). 

3. In se t t i ng  up eqs0(l6. la)  - (16.1Lb), the  operation o f  d i f f e ren t i a t ion  
i s  not performed on the components of  the force vectors. a u a t i o n s  (7.4a) 
(7.fl.d) a re  s e t  up under the  assumption t h a t  a d i f f e ren t i a t ion  o f  the components 
of the vectors o f  body forces  i s  permissible. T h i s  gives a cer ta in  advantage 
t o  eqs.(lb.la) - (16.4b) over the  equations s e t  up according t o  the first ver
sion (Sect .u). 

14. The difference i n  t h e  composition o f  eqs0(l6. la)  - (16.1kb) and t h a t  o f  
eqs.(7.ka) - (7.I+d) can be explained by the theory of  approximation functions. 
Quat ions  (".ha) - (7.Ld) a re  se t  up according t o  one of  the methods of opti-/129 
mum "at-a-point" approximation ?unctions, while eqs. (16.la) - ( 1 6 4 1 )  correspond 
t o  one of the methods of  optimum representation of "in-the-mean" functions. 

Section 17. 	Natural Boundary Conditions Derived from the  
Gariational Equation (15.16) 

Let us pass now t o  the  consideration of  the in t eg ra l  over the contour of 
t he  basic  surface tha t  en ters  i n to  eq.(15.16). A study of t h i s  i n t eg ra l  per
mits us t o  es tab l i sh  various versions of the  boundary conditions. Iiere, the 
in t eg ra l  r vanishes if a l l  t he  components under the sign of integrat ion l ike

(C) 

wise vanish-::-. 

For these summands t o  vanish, one o f  two conditions must be sa t i s f ied :  
Ei ther  the corresponding var ia t ion  &I$') must vanish o r  the coeff ic ient  of  t ha t  
var ia t ion  must vanish. Terrns i n  the var ia t ions 6%' do not en ter  i n to  the ex
pression under the in t eg ra l  sign over the contour of the basic  surface. Thus, 
t he  var ia t iona l  equation (15.16 ) yie lds  nine boundary conditions, corresponding 
t o  the var ia t ions 6 q ,  6rq('), 6%("). 

Since the order of the  system of  ecpations (16.la) - (16.1Lb) r e l a t ive  t o  

:+ The necessity of  this condition i s  proved i n  courses on the  pr inciples  of  ana
l y t i c  mechanics. 
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t he  der ivat ives  with respect t o  the coorciinates i s  twelve, it may be assumed 
t'nat t he  system of natural  boundary conditions resu l t ing  from the  var ia t ional  
equation (15.16) i s  compatible with these eqcations. Obviously any sim-plifica
t i o n  of the  system o f  equations (16.1~~)- (16.4b) must be accompanied by a 
change in the  boundary conditions. 
boundary conditions with the  system of fundamental equations must be subjected 

The question of the  compatibility of the  

t o  a special  analysis  i n  spec i f ic  problems. 

L e t  u s  now consider, as an e-uample, several  versions of  t he  bomdary con
di t ions.  

1. With Rigidly Attached Contour Surface 

In  t h i s  case, we obviously have 

Ye do not impose conditior;s on up), since the var ia t ions  do not en ter  
i n to  the  in tegra l  and the  conditions imposed on ui(3) will not be natural. 

(C 1 
2. wit;? Free Contour Surface /13 0 

I n  this case, the var ia t ions  & u p )(i= 1, 2, 3 )  z re  arbi t rary.  >/e obtain 
t h e  natural  conditions by equating the  coeff ic ients  of these var ia t ions  t o  zero. 
On the  bas i s  of eq.(15.16), we f ind  

I n  the  other  cases, t h e  boundary conditions are mixed. Their formulation 
depends on the  scope of the  spec i f ic  problems of the  mechanics of  shells.  

Section 18. Ini t ia l  Conditions 

The question o f  t h e  in i t ia l  conditions cannot be solved by analogy t o  the  
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question of the  boundary conditions from a d i r e c t  study of t he  var ia t ional  equa
t i o n s  (15.16). If we s t a r t . f r o m  considerations similar t o  those set fo r th  i n  
Sect.14, we will again obtain twenty-four i n i t i a l  conditions which will not be 
s a t i s f i e d  by solut ion of t he  system (16.la) - (16..4b), s ince the  order of this 
system wtth respect t o  t i n e  i s  eighteen. Obviously some of the  generalized co
ordinates  mst obe the  in iL ia l  conditions, f o r  example only the  generalized
coordinates ul ,  q(5,q(2)(i = 1,'2, 3) .  I n  t h a t  case, t h e  number of i n i t i a l  
conditions w i l l  be eqv.al t o  the order of t he  system. 

The l imi ta t ion  imposed on the  number of i n i t i a l  conditions i s  confirmed 
also by considerations based on the pr inciples  of ana ly t ica l  mechanics of dis
c re te  systems. A comparison of the  formulation of the  problems under study 
w i t h  t he  formulation of the  c l a s s i ca l  problems of ana ly t ica l  mechanics permits 
us  t o  re f ine  the meaning of  the i n i t i a l  condition sought. 

Xe r e c a l l  t h a t  t he  s e t  o f  quant i t ies  determining the  i n i t i a l  conditions i n  
the problems of the motion of systems of material points  en te r  i n t o  the  t o t a l  
time der ivat ives  which appear on the  left-hand s ide of the  general equation 1131 
of dynamics;':-. 'de s h a l l  perform the  transformation of only one summand i n  the  
left-hand side of t he  general equation of dynamics (15.14). This will permit 
us, by analogy, t o  wri te  out  the required expression completely. We have 

Hence we conclude t h a t  t he  function determining the  i n i t i a l  conditions i s  
o f  the  following form: 

$5 These quant i t ies  subsequently form terms outside the  in t eg ra l  sign, which ap
pear i n  the proof of  t he  Ostrogradskiy-Hamilton pr inciple  and vanish when the 
paths of comparison are  properly chosen. 
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The composition of t he  function Q confirms our preliminary statement t h a t  
the  i n i t  al conditions n problems of t he  dynamics of shel ls ,  under the  condi
t i o n a l  accuracy of the  equations here adopted, a r e  expressed as follows: 

(18.2) 


Consequently, here too, the conditional accuracy or the eqLations per- /132
mits us  t o  f ind  the  displacements only w i t h  an accuracy t o  terms containing the 
fac tor  z“ inclusive,  although f o r  s e t t i n g  up the Budmen ta l  system of equa

1t ions  we use terms of the form-
31 

z”%(~’ a d  the  eqcations contain terms with 

f ac to r s  h3 . 
I n  s p i t e  of t he  presence of terms with the f ac to r  h3, it wf.11 be noted 

t h a t  t he  conditional accuracy of eqs0( l6 . la )  - ( lS.4b)  i n  cer ta in  cases i s  de
termined by the order of the  terms containing h‘. I n  Tact, i f  the  surface 
forces X vanish, then, as i s  obvious from the equations of generalized 
forces  (15.15 a ) ,  the generalized forces  w i l l  be of t!ie order h. After term-by
term divis ion of the  equations by h, we obtain equations w i t h  terms containing 
h in  a power not higher than the second, 

To sumar ize  our resu l t s ,  we  may note t h a t  the  appl icat ion of t he  general 
equation of dynamics permits u s  t o  obtain b e t t e r  compatibil i ty of  t he  system of 
equations s a t i s f i e d  by the wanted functions on the  basic  surface with the boun
dary arld i n i t i a l  conditiofis, than can be obtained by using the methods indi
cated i n  Sec te l l .  

Section 19. On Concentrated Forces 

‘de mentioned above t h a t  the  method considered i n  Sect.11 requires a m i l l t i 
p l e  d i f f e r e n t i a b i l i t y  of the  vector components of the ac t ive  forces  applied t o  
the  shell .  The permiss ib i l i ty  of t h i s  method i n  the case of the ac t ion  of con
centrated surface or body forces  on the  s h e l l  becomes doubtful. Of course, 
these doubts a re  connected with an object  having no physical existence, namely, 
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t he  concentrated force. A11 t he  sane, t he  concept of  concentrated force, for 
a l l  i t s  abstractness,  occupies a d e f i r i t e  pos i t ion  among the  concepts of  t h e  
mathematical theory or" e l a s t i c i t y  and appears i n  the  form ol" analy t ic  singular
i t i e s  of  the  corrponents of t he  displacement vector, the  deformation tensor, and 
the  stress tensor. It i s  therefore  na tura l  t o  s t r i v e  �or an ana ly t ica l lx  cor
r e c t  introduction of  concentrated forces  i n t o  the  approximate representat ions 
of t h e  applied theor ies  of  e l a s t i c i ty ,  and espec ia l ly  i n t o  t h e  she l l  theory. 

The theory developed i n  Sects.15 - 18 inposes fewer r e s t r i c t i o n s  on t h e  
proper t ies  of t he  forces  applied t o  t h e  s h e l l  than t h e  first version of  t h e  so
l u t i o n  of the  reduction problem. 

The construction of  eqs0(l6.la) - (16.Lb) does not  require  t h a t  the  com
ponents of body and surface forces  be d i f fe ren t iab le .  These equ-ations a l so  ap
p ly  t o  cases of t he  ac t ion  of  concentrated forces  i f  t he  components of t he  con
centrated forces  are expressed i n  terms of t he  Dirac de l ta  function. Here
a f t e r ,  i n  solving eqs.(16,la) - (16.!+b) we must make use of operations t h a t  do 
not  include the  d i f f e ren t i a t ion  of t he  components of concentrated forces. It i s  
well  known t h a t  t:his raquirerLent i s  s a t i s f i e d  i n  a number o f  special  prob- /133
l e m s .  The appl icat ion of the  theory of  general.ized functions considerably ex
pands the c l a s s  of  these problems. 

Xe s h a l l  a l so  ind ica te  a method t h a t  does not  require  an e x p l i c i t  applica
t i o n  o f  the theory of  genera.l;ized functions. L e t  us assume, f o r  def ini teness ,  
t h a t  the  concentrated force P with components P, i s  applied t o  the boundary 
surface z = +h. Then, from the  well-known de f in i t i on  of  concentrated forces,  
we have 

where S, i s  the  region on the boundary surface t o  which the  point  M of applica
t i o n  of the vector  P belongs. 

2-3 +
L e t  u s  denote by L(m) 1 (a, u )  the  coef f ic ien ts  of  G U ~ ( ~ )i n  the  double inte

gral entering i n t o  the  var ia t iona l  equation (15.16). Obviously L(") i s  the  
d i f f e r e n t i a l  operator def ining a cer22i.n s e t  of operations t o  be pezformed on 
the  components of  the  s t r e s s  tensor  IS and t h e  displ .acc+n~+,:r?ctor u. L e t  

where (;tpq)(xJ) i s  a complete system of l i n e a r l y  independent functions of  two 
var iab les  XJ on the  bas ic  surface, while t he  coef f ic ien ts  a&, are arbi t rary.  
Then, instead of the  system of equations ( 1 6 . h )  - (16.4b) which we obta' ed by
equating t o  zero the  coef f ic ien ts  of under the  sign of  in tegra t ion  

(E) 



i n  eq.(15.16), we obtain an i n f i n i t e  s p t e m  of in t eg ra l  r e l a t ions  o f  the  follow
ing  form: 

p q )  (x')  (1 -R,h) (1 -R,h) h* =0. 
IM 
 (19.3) 

where the  values of a l l  quan t i t i e s  i n  brackets a re  taken at the  point M of  ap
p l ica t ion  of the  concentrated force P. 

r"urther determination 0;" the  required quan t i t i e s  f roh  eqs.(19.3) usually 
leads  t o  the solution of i n f i n i t e  systems o f  algebraic equations. The modifi
cat ions of eqs.(19.3) i n  the case of the act ion o f  a concentrated body force 
a re  obvious. 

Let us consider the case of the action of a concentrated force on the /l34 
contour surface of a shel l .  I f  the concentrated force P i s  applied t o  the con
tour  surface a t  the point bl(sz-, z;'), then t h i s  w i l l  introduce in to  the quanti
t i e s  S(.) 1 the  following addi t ional  terms: 

x 6 (s, -sD. (19.4) 

where S(s ,  - sz-) i s  the  d e l t a  function. 

Let us put, on the  contour surface, 

where J. (p)  ( s c )  i s  a complete system of l i nea r ly  independent functions of t he  
a rc  s, of the  contour, while the  coeff ic ients  b (p)  on those pa r t s  of  the con
tour  t h a t  are f r e e  from kinematic constraints  are arbi t rary.  

L e t  u s  denote the  coef f ic ien ts  or" Gui@)i n  the  in t eg ra l  entering in to  the  
2- .. ( C )  

var ia t iona l  equation (15.16) by PI(") $!? f )  . The meaning of t h i s  symbol i s  
analogous t o  t h a t  of the  symbol L(m) i (0,U) . Then, the  system of boundary con
d i t i o n s  w i l l  lead t o  a system of  i n t eg ra l  r e l a t ions  of the  form 
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where o(sC - s = )  i s  the  Heavisidt function. The in t eg ra l  i s  extended t o  seg
ments of a rc  of the  contour t h a t  are free from kinematic constraints.  If the  
concentrated force i s  applied a t  a point where, because of kinematic considera
tions,  we must put 6u,(") as equal t o  zero, then the  corresponding boundary con
d i t i o n s  (19.6) l o se  t h e i r  meaning. 

Equations (19.6) supplement t he  system of  conditions of the form of equa
t ion  (19.3). 

Section 20. 	 Second Version o f  the Solu t ionTf  the  Problem-
of Reduction' 

In  Sect.11 we pointed out t h a t  there  ex i s t  two methods of solving the  re
duction problem i f  we start from t h e  s y s t e m  o f  equations (7.4.a) - (7.&d). We 
did not discuss the  second method and confined ourselves t o  the statement t h a t  
this method w a s  close t o  the c l a s s i ca l  theory of  shel ls .  Sections 15 - 1 9  do 
not r e l a t e  t o  the second version, since we did not r e f e r  t o  eqs.(7.4.a) - (7.4.d). 
Here, likewise, we sha l l  not make use of these equations but start from the 
general equation of  dynamics (15.1). The resu l tan t  equations w i l l  be close 
i n  form t o  t h e  equations of the c l a s s i ca l  theory of shel ls ,  We will therefore

/135 
speak here of  "the second version", although we a r e  r ea l ly  going beyond the  l im
i t s  of  the  scheme given i n  Sect.11, 

Let us  re turn  t o  the  var ia t iona l  equation (15.1) and t o  eq.(15.10). 5;Je 
s h a l l  a l so  make use of eqs.(15.5). Let us expand the  quan t i t i e s  V, 6%(z) i n  ten
sor s e r i e s  iri powers o f  z ,  displacing them thus t o  the basic  surface of the 
shel l ,  and l e t  us  a lso displace the s t r e s s  tensor  components t o  the basic  sur
face along the coordinate l i n e s  d = const, 2 = const, without expanding them 
i n  ser ies ,  but using instead the  operators o f  p a r a l l e l  displacement given pre
viously (I, Sect.11). These components of the  displaced s t r e s s  tensor w i l l  be 
denoted by +k. From eqs.(I, lLl), (I, 11.12) - (I, 11.U) and (I, 11.18), we 
have 

& =A;Ai,aPq =is; +a;)(6; +0;)ap4,  
( a >  

o r  
, t i l  =(1 -k,Z)(1 -kjZ)uti; (20. l a  ) 
T i 3  =(1 -R,z)013; 7 3 3  =0 3 3  

(20.lb) 
(i, j = 1, 2; do not sum over i and . j I ) .  

As a re su l t  we obtain from eq.(l5.10;, instead of eq.(15.11), the  follow
ing re la t ion :  

8w'='=TikViBU, +T i 3  (Vlbu3+6uj") +733&&)+ 
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L e t  us introduce t h e  notation 

+ h  

T'"')"=-!
m! 

zmuif (1 -
-h 

+ h  
. n  

--h 

'-h 


T ( m )  33 =nt !s 

(20.2) 

k , z )  (1-biz) (1 -k,z)(1 -k,z)dz, 

zmaJ3(1 - R,z) (1 -k g j  d z  
- h  

The quant i t ies  T ( . J i J  a re  components of the  second-rank tensor on the  mid
d le  surface, Le. ,  i n  t he  set of coordinates xJ( j  = 1, 2); the quant i t ies  T") l 3  
are vector components in this se t ,  and the  quantity T(m)33 i s  a scalar. From 
the analytic-functional viewpoint, these quant i t ies  are generalized functional 
moments about e, of an order d i f f e ren t  from that of the  s t r e s s  tensor compon
ents. 

We s h a l l  now re turn  again t o  the  general equation of dynamics (15.1), and 
after transformationa we reduce it t o  the following form: 
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The var ia t iona l  equation obtained here, l i k e  eq. (15.16 ), permits se t t ing / l37  
up a two-dimensional system of d i f f e r e n t i a l  equations of motion and t o  ind ica te  
the  na tura l  boundary conditions. These equations in themselves, however, do 
not  a s  ye t  solve the reduction problem. 

Section 21. F i r s t  Group of Bastodynamic EQuations of the  
Theory of She l l s  

Equating t o  zero the  v a r i a t i o n a l  coef f ic ien ts  of the generalized coordi
na tes  entering in to  the  expression under the  sign of in tegra t ion  over the  mid
d l e  surface w of the s h e l l  i n  eqs(20.5), we now f ind the  following equations of 
motion: 

2 ph3(k1 +k,) gk'at) + 
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The system of equations (21.la) - (2l.5) contains f i f t e e n  equations wi th  
thir ty- three unknown functions. The unknowns in the equation a r e  the  twenty-
four moments about z of the  stress tensor components and t h e  nine coef f ic ien ts  
of the  expansion in power s e r i e s  of t he  displacement vector components. Thus, 
i n  s e t t i ng  up eqs0(2l . la)  - (21.5) we have been g u i l t y  of a l og ica l  incon- /138 
sistency, caused by t he  select ion of the  system of generalized coordinates and 
leading t o  equations containing both moments and coef f ic ien ts  of an ekpansion i n  
power series.  This inconsistency can be eliminated by select ing the  general
ized coordinates i n  a d i f f e r e n t  way. However, t he  system of equations (21.la)- (21.5) obtained by t he  mixed method permits u s  t o  e s t ab l i sh  a d i r e c t  connec
t ion  with the  equations of t he  c l a s s i ca l  theory of s h e l l s  and t o  analyze t h a t  
theory from t h e  posi t ion of ana ly t ica l  mechanics. 

Equations (21.4a) - (21.5) do not contain i n e r t i a l  terms. These equations 
permit f inding the  moments of the  t h i r d  and second order of the  components of 
the  normal part  of the  s t r e s s  tensor. The meaning of equations (2l04a)-(2l.5)
i s  analogous t o  that of t h e  Kirchhoff-Love hypotheses, since they make it pos
s i b l e  t o  solve the  reduction problem. The system of equations (21.4a) - (2L.5) 
i s  indeterminate and must be supplemented by equations resu l t ing  from Hookets 
law. 

.- ~Section 22. 	 Second Group of ELastodynamic Equations of 
the  Theom of Shel l s  * 

L e t  u s  express the  moments of the  stress tensor  components in terms of the  
coef f ic ien ts  of expansions i n  s e r i e s  i n  powers of z of the  displacement vector, 
making use of Hookets law. Following the  *"jxedt' method, we s h a l l  make use of 
eqs.(20.3), expanding t he  stress tensor  components -rlk i n t o  tensor  power series, 
i n  ascending powers of z, t h u s  accomplishing the  p a r a l l e l  displacement of the  
stress tensor  to t he  basic surface. 
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Making use of eqs.(15.12) - (15.12c), we f ind  

n -0 

(i,k = 1, 2; do not sum over i and k1). 

The choice of N depends on t h e  conditional accuracy prescribed f o r  the 
equations t o  be set up. If the equations mst not contain terms wi th  fac tors  h 
t o  a power higher than the  third,  then N S 2. The number of generalized coor
dinates  t o  be determined in this case is twelve. Substi tuting t h e  expres- f139 
sions (22,la) - (22.1~)  i n t o  eqs.(20.3), we f ind t h e  re la t ions between the mo
ments of the components of the stress tensor and the generalized coordinates. 
We have 
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!!E g" ( V i U ,  +.I")+... ,
3 

A t  the  conditional accuracy adopted here, a l l  the moments T(3) ' must be/l/O 
equated t o  zero: 

-77'3' x.3 __0; 743133 --0. (22.5) 

Equations (22.5) coincide with eqs.(2l.5). 

The systems (22.2a) - (22.5) form the second group of elastodynamic equa
t ions  of t h e  s h e l l  theory i n  the version given here f o r  se t t ing  up t h i s  system.
It includes eighteen equations supplementing the f i r s t  group. The first and 
second groups together contain thirty-three equations. Obviously, under the 
method of calculation adopted here, the system of equations (21,la) - (21.5) 
and (22.2~~)- (22.5) i s  equivalent t o  the system of equations (16.h) - (16,4b),
supplemented by the re la t ions  (15.12a) - (15.12~). Therefore, we need not dis
cuss here the general properties of the systems (21.la) - (21.5) and (22.2a) 
(22.5), since we intend t o  do this i n  our comparative analysis of the equations 
of the c lass ica l  theory. 

Section 23. Boundary and Ini t ia l  Conditions 

FQuating t o  zero the components under the sign of integration over the  
contour of the  basic  surface i n  eq.(20.5), we obtain a system of natural  boun
dary conditions. This system does not d i f f e r  basical ly  from the  conditions 
considered i n  Seat.17. We shall ,  therefore, give here only t h e  conditions on 
the  free part of the contour surface that differ i n  analyt ic  form from the con
d i t i ons  (17.2a) - (17.4b). The conditions on the  attached part of the contour 
surface remain unchanged. 

Thus, on the free part of the contour surface, the following conditions 
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a r e  sa t i s f i ed :  

We s h a l l  not analyze the conditions (23.1). The main stetements in 
Sect.17 na tura l ly  apply t o  t h i s  somewhat mbdified formulation of t h e  boundary 
problem. O f  course, the ini t ia l  conditions considered i n  Sect.18 a l so  apply t o  
the  solut ions of t he  systems of equations (21 .h)  - (21.5), (22.2a) - (22.4~). 

Section 24. 	 Generalized Conclusions and Further Development of the 
A n a l ~ i cMechanics of Shel l s  

Analyzing the  contents of Sect.15 - 23, we may remark t h a t  the  discussed 
methods are based on se lec t ing  t h e  generalized coordinates i n  such a manner a s  
t o  r e s t r i c t  t he  number of degrees of freedom of the  s h e l l  i n  t h e  d i r ec t ion  of a 
normal t o  t h e  bas ic  surface. The reduction of the  three-dimensional problem of 
the  t h e o q  o f  e l a s t i c i t y  t o  the  twodimensional problem goes back t o  this same 
res t r ic t ion .  Similarly, the  method of expansion i n  tensor  series, a method /141
based on the use of various kinetic-geometrical hy-potheses ( f o r  example, the  
hypotheses of s t r a igh t  invar ian t  normals), in some form o r  other  limits the  num
b e r  of degrees of freedom of the  s h e l l  in t h e  d i r ec t ion  of a normal t o  its 
bas ic  surface. 

Evaluating these methods of solut ion of the  reduction problem, we must 
recognize t h a t  t he  most 1o.gically consistent are the  methods of reduction based 
on an appl icat ion of the  general equation of dynamics (15.1). These methods 
permit us  t o  formulate a s y s t e m  of  na tura l  boundary conditions and t o  f ind in i 
tial conditions t h a t  do not e x p l i c i t l y  contradict  t he  propert ies  of the solu
t ions  of the pr inc ipa l  system of equations. 

The method of expansion i n  s e r i e s  gives even l e s s  d i s t i n c t  grounds f o r  es
tab l i sh ing  the  system of boundary and i n i t i a l  conditions. There a re  a l a rge  
nuniber of methods of reducing the  three-dimensional problems of the theory of 
e l a s t i c i t y  t o  t h e  two-dimensional problems of the  theory of shel ls .  All these 
methods a re  based on various se lec t ions  of the system of  generalized coordi
nates. We s h a l l  here s t a t e  two choices which, in our opinion, a r e  of funda
mental i n t e re s t .  

1. Choice of Genera l izd  Coo.@inates Corresponding to the  
Optimum Quadratic Approximations 

We already called the  readervs a t ten t ion  t o  the  cor re la t ion  between the 
reduction problem and the  methods of approximate representation of functions. 

The method of expansion in s e r i e s  is one of t he  methods of optimum repre
sentation of in-point functions. In the  case of t he  presence of ana ly t ic  sin
g u l a r i t i e s  near t he  approximation functions, however, t h e  process of approxima
t i o n  by segments of a Taylor s e r i e s  may prove t o  be divergent. This i s  par t ic
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u l a r l y  important f o r  us, s ince t h e  existence of concentrated forces  act ing on 
an e l a s t i c  body cause the  appearance of ana ly t ic  s ingu la r i t i e s  near the compon
en t s  of t h e  displacement vector and the  stress tensor. For t h i s  reason, we 
will consider a choice of generalized coordinates leading t o  a determination of 
t he  coef f ic ien ts  of t he  expansion of the  required functions in Fourier s e r i e s  
over the segment (-h, +h) of a normal t o  the  bas ic  surface of the  she l l ,  and 
ind ica te  the  p o s s i b i l i t i e s  f o r  fu r the r  development of this method. W e  r e c a l l  
t h a t  segments of a Fourier series accomplish optimum quadratic approximation t o  
the  function t o  be approximated*. 

L e t  t he  displacement vector .  t undergo p a r a l l e l  displacement t o  the bas ic  
surxace along a normal t o  t h a t  surface. L e t  u s  denote the  displaced vector /l42 
by V. From eqs.(I, 11.12) - (I, ll.U+), and (I, 11.18), we have 

vi=ZLi (1 -k,z); 213 =ua 

(i=.l, 2; do not sum over i1) .  

Let u s  expand the  components vi i n  Fourier ser ies :  

where 

The representation of v1 by the s e r i e s  (24.2) i s  equivalent t o  abandoning 
a determination of vi on t h e  boundary surface of the shel l .  In  fac t ,  if the  
s e r i e s  (24.2) i s  convergent, then, a t  the  boundarg surfaces z - f h t h i s  s e r i e s  

will converge t o  the  value 1 (vi(+, + vi(-) ), where vi(+)a r e  the  values of the  vec

t o r  components v' on the boundary surfaces of the shell .  

Within the  i n t e r v a l  (-h, +h)  the  s e r i e s  w i l l  converge t o  the  values of vi .  
We therefore  adopt t he  de f in i t i on  of v* by the series (24.2) as a simplifica
t i o n  whose meaning w i l l  be given below. The coef f ic ien ts  vi(.) and d(mjwill be 
considered a s  generalized coordinates. Further,  we have 

m 

'1 mxzzvi =-- 8vfo,+ ~vf,,cos +G W ~ , ~ )-
h 

sin -
h (24.4)2 

m-1 

-.

* Cf., f o r  example, V.L.Gonchar:v, Theory of Interpolat ion and Approximation 
Functions, ONTI, 1934. 



Let us establ ish the  connection between the  coeff ic ient  vi(Bj, +(Bl and the  
Fourier coeff ic ients  of the  stress tensor components. Using HookeTs law,  we 
f ind the  following relations:  

5 i k  hg'"irv' +).g'"3vJ +p (g i+7pk +gk"p'), (24.5a) 

Ti3 -= p (g"vrv3+v3v'), (24.5b 1 
233 '=  1Vrv' +(h  +2p) P 3 V 3  (24.5c 1 

( i ,  k, r = 1, 2; do not sum over i and k!). 

The va l id i ty  of these re la t ions  f o r  Euclidean space within a she l l  i s  ob
viou#. 

To find the Fourier coeff ic ients  of  t h e  stress tensor components we mst/lk3 

multiply eqsm(24.5a) - (24.5~) term by term by cos-
m z  and sin-mTIZ and inte

h h 
grate over z from -h t o  +h. L e t  us  first consider the result of t h i s  operation 
performed on the covariant derivative V3vi, bearing of course i n  mind t h a t  a l l  
the covariant derivatives i n  eqs.(24.5a) - (24.5~)  a re  determined in t h e  metric 
of the space adjoining the  basic surface. We have 

(i, j = 1, 2; do not sum over i t ) .  

+ h  

-h 

+h 

=k m= IwfmI3 'sv3ui sin mxz -
h 

dz = --u(,) -Riw[,)
h 

-h 

( i  = 1, 2, 3; do not sum over i!), 
-

* I n  Euclidean space, an auxi l iarg Cartesian system can always be introduced ir  
which the eqs.(24,5a) - (24.5~) are d i r ec t ly  confirmed. But the tensor equa
t ions  a re  invariant [cf. (I ,  Sect.6) and (Bibl.7)d. 



In these equations f o r  i - 3, we must set & = 0. Here we have borne i n  mind 
t he  above remark on the properties of the series (24.2) a t  e = *h. When vi i s  
represented by the  series (24.2), t h e  difference vi+ - vi- must be taken a s  
zero. 

The covariant d i f fe ren t ia t ion  Vi f o r  i = 1, 2 and integration over z are  
commutative, since the  der ivat ives  Vi are determined i n  the metric of a space 
adjoining t h e  basic  surface. 

L e t  the  expansion in a Fourier series of the  stress tensor components have 
the  following form# 

Then, f r o m  eqso(24.5a) - (24.5~)  and bearing eqs.(24,6a) - (24.6b) in /l&
m d ,  we find 

Equations (24.8a) - (24.lCb) form one of the groups of elastodynamic equa
t ions  of t h e  she l l  theory, To s e t  up the second group (equations of motion), 
we must again return t o  t h e  general equation of dynamics. Consider f i r s t  the 
var ia t ion 6W(*)of the specif ic  potent ia l  energy of deformation. On the  basis 
of eq.(15,10), we f ind 

* Here, too, the  above statement on the  series (24.2) is valid. 
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Since t h e  f a c t o r  (1- klz )  (I - k,z) which, according t o  eq.(15.2), en t e r s  
i n t o  the  expression f o r  t he  element of volume dV, complicates t he  d i r e c t  trans
formation of t he  general equation of dynamics (15.1), l e t  us put 

Vi=(l -kk,z)(l -kk,z)v' .  
(i = 1 ,  2, 3). (24.12) 

Hence, it follows t h a t  

YjVi 
1 ___ vivi; v3vi= 

1 _ _  
V3 V' + 

( 1  -k , z ) ( I  - k,z) (1 -k , z )  (1-k , z )  
a+ v i - ( l - ~ ~ ~ ) - ~ ( l - k ~ z ) - l( i = l , 2 , 3 ;  +1 ,2 )  (24.13 182 

and 
- .\;;.cv' = 1 

- v i w ;  60,v' = 
1 5v3V'+

( 1  -k , z )  ( 1  -k2z) (1 -k , z )  (1 -k,z)
+;vi--a ( 1  -k,z)-I(l - k,z)-' ( i =  1, 2, 3; J =  1 ,  2). 

az 

Let us represent Vi and the  var ia t ions  SV, by Fourier ser ies :  

O f  course, t he  Fourier coef f ic ien ts  of the  functions Vi and vi as w e l l  as 
6v and 6v' a r e  in te r re la ted .  We s h a l l  not consider these relat ions,  but  note 
that, t h e  a r b i t r a r i n e s s  and independence of the  var ia t ions  6vi(,] and 6wilrl results 
i n  the  a r b i t r a r i n e s s  and independence of the  var ia t ions  SIP(,) and SWi,,,. 

Let us expand the  quan t i t i e s  V3Vi i n  a Fourier series. We have 

Consequently, 



Here, from eqs.(24,6a) - (24.6b), after an obvious change of notation, w e  find 

. 
We recall that & = 0, 

After obvious transformations we find, from the relations (24.U.) 
(24.18b): 

-h 

Here, w e  have introduced the notation 
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-h 

(i= 1. 2, 3). 

The right-hand s ides  of eqs.(2&.20a) - (24.2Cb) can be represented by ser
ies  with terms expressed by and e*& . For su f f i c i en t ly  t h i n  she l l s ,  how
ever, there  i s  no point i n  complicating the  statement of t he  problem by consi
dering these relations.  Indeed, f o r  t h in  s h e l l s  the  function 

k ,  +k,  - 2R,k,z
f ( x /  2)= 

1 - (k, +k,) z +k,k,z2 

is monotonous f o r  fixed values of xJ ( j  = 1, 2)  i f  2; var i e s  over the in t e rva l  
(-h, +h), Then, applying the  theorem on the  in t eg ra l  mean, we f ind 

where C1 and c2 are cer ta in  values of z on the  in t e rva l  (-h, +h), which in gen
eral depend on i and m. For su f f i c i en t ly  t h i n  shel ls ,  we may approximately /147 
Put 

f (x j ,  C i )  = I C ,  +k,. (24.23) 

In special  cases, t h e  function f(xJ, z) i s  simplified. For example, f o r  
t he  case of p la tes  this function vanishes. 

L e t  u s  continue the  transformation of the  quan t i t i e s  entering in to  the 
var ia t iona l  equation (15.1). The v i r t u a l  work of the  forces  of inertia is 
transformed as follows: 



I 

L e t  u s  introduce the  following notat ion fo r  t h e  generalized forces  on the  
bas i c  surface: 

The generalized forces  on the  contour surface are expressed as follows: 

-h (24.26b ) 

where 

Equations (24.25a) - (24.26~) are andogous in meaning t o  expressions 
(15.15a) - (15.1%). 

W e  s h a l l  not consider the  subs t i tu t ion  of t he  resu l tan t  expression into /148
t he  general equation of dynamics (15.1) nor the  simple transformations connected 
with such subst i tut ion,  since they are analogous t o  those given above i n  Sec
t i o n s  15 - 23. 

We s h a l l  now present the  system of d i f f e r e n t i a l  equations of motion and of 
the  na tura l  boundary conditions resu l t ing  from the  var ia t iona l  equation (15.1) 
with our se lec t ion  of generalized coordinates. The equations of motion have 
t h e  following form: 



( m = 1 ,  2 , . . . ; j = l I  2, 3; i = l ,  2; do not sum over jl).  

Here e3 = 1; k3 = 0. 

The natural  boundarg conditions on the portion of the contour surface f ree  
from kinematic constraints are: 

~ 4 ,  -L(o) =0; (24,301 
Tifm)jtzi -L(,, =0 ;  

0'.
(m)J

.Itl -M ( m ) j=0 (24.31 1 
(m= 1, 2,. .;j= 1, 2, 3; i- 1, 2). (24.32) 

The conditions on the  clamped edge will not be writ ten out. These a re  ob
vious, Since a l l  equations derived here a re  of the second order wi th  respect 
t o  time t, the system of ini t ia l  conditions does not d i f f e r  from those known 
from Courses i n  the  principles of mechanics. 

If we make use of eqs0(24.22a) - (24.23), then the systems of equation 
(24.8a) - (24.lCk) and (24.27) - (24.29), taken together with the boundary con
d i t ions  (24.30) - (24.32), permit us t o  fonrmlate autonomous boundary condi
t ions  t o  determine t h e  Fourier coefficients of the wanted quantities. 

These problems are all of  the same type. For m # 0, each of the boundary 
problems leads t o  solution of the system of equations of the twelfth order with 
unknown Fourier coefficients of  the displacement vector components. The s o h 
t ions must sa t i s fy  six boundary conditions. For m = 0 the system of equations 
w i l l  be of the s ix th  order, and the number of boundary conditions w i l l  be three. 

There a re  two additional remarks t o  be made on the application of Fourier 
series expansions t o  solution of the problem of reduction. 

1. W e  have selected the segment (-h, h )  a s  the interval of expansion. It 
follows from the theory of Fourier se r ies  t ha t  t h i s  in te rva l  can be extended i f  
we indicate the  analytic prolongations of the components of the displacement /149 
vector beyond the segment (-h, h). Since the values of the displacement vector 
components vi beyond the segment (-h, h )  are arbitrary,  they can be chosen such 
tha t  the expansions obtained over the extended in te rva l  sha l l  not contradict 
the conditions on the boundary surface of the shel l .  

2, The above selection of t h e  generalized coordinates can be so modified 
tha t  the operation of different ia t ion with respect t o  z of the proposed expan-

, 
sions of the vector components vi sha l l  not be expl ic i t ly  nor implicit ly en-



countered. For this, it i s  su f f i c i en t  t o  s t a r t  from the  expansions of the  com
ponents V 3 v 1 ,  and then t o  use t h e  system of l i n e a r  d i f f e r e n t i a l  equations of 
the  first order f o r  f inding the  vi. In t h i s  case, the  generalized coordinates 
w i l l  be the  quan t i t i e s  vic,, and 3 .  A similar select ion of generalized co
ordinates  will be discussed below in Subsect.2. 

2. -@e of the  New Versions of the  Choice of Generalized Coordinates 

In  most of t he  present Chapter we have been considering methods of reduc
t i o n  based on the  approximate representation of the  displacement vector compon
e n t s  as functions of t he  coordinate e. To determine t h e  stress tensor  compon
e n t s  as functions of z we had t o  d i f f e r e n t i a t e  t he  expressions of the  displace
ments Kith respect t o  e. Such a method of reduction cannot be cal led opti". 
This shortcoming was t o  some extent compensated by the  use of Fourier expan
sions. 

We sha l l  now ind ica t e  another possible approach t o  elimination of t h i s  
drawback. L e t  u s  approximately represent the covariant der iva t ives  V3u,  by the  
equations : 

where fl i s  a function approximately representing the  der iva t ive  V 3 q ,  while 
4'1, ...,qb) a r e  parameters considered t o  be generalized coordinates. They are 
functions of the  coordinates x J ( j  - 1, 2)  and of the  time t. We r e c a l l  t h a t  
t h e  quant i ty  16 must be put equal t o  zero. 

Integrat ing the d i f f e r e n t i a l  equation (24.33), w e  f ind 

( i =  1, 2, 3). 

Now it i s  no longer necessary t o  d i f f e r e n t i a t e  with respect t o  e i n  calcu
l a t i n g  the  stress tensor  components. 

Let u s  represent the  function f ,  by the  polynomial m 

(i= 1, 2, 3). 
(24.35 1 
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Then, w8 obtain 

[i= 1, 2, 3). 
(24.36b ) 

Displacing these quant i t ies  t o  the  bas ic  surface, we find, f r o m  (I, ll .12)- (I, 11.13) and (I, ll.20), 

(i = 1, 2, 3). 
(24.37b 1 

We then set up the  d i f f e r e n t i a l  equations of motion and t h e  boundary con
d i t i ons  by means of t h e  var ia t iona l  equation (15.1). We leave this task t o  the 
reader as an exercise. W e  also c a l l  a t t en t ion  t o  the  coincidence of the right-
hand s ides  of eqs.(24,37a) - (24.37b) with the  segments of t he  tensor  s e r i e s  
considered by u s  a t  the  beginning of this Chapter. This again confirms the  in
t e r r e l a t i o n  between the  operations of expansion of tensor  functions in general
ized Taylor series and t he  parallel displacement of t m s o r  quan t i t i e s  over f in
i t e  distances. 

Section 25. 	 Application of Analytic Methods t o  the  Theory-
of Osci l la t ions of Layered She l l s  

Consider a s h e l l  consisting of pa ra l l e l  i so t ropic  l aye r s  of constant non
iden t i ca l  t h i chess .  The bas ic  surface is superposed on the  boundary surface of 
t he  s h e l l  having a un i t  vector of t he  n o m 1  (I, 3.1) directed inwards i n  the 
material of the  shell .  This choice permits u s  t o  obtain several  p a r t i a l  mathe
matical simplifications. O f  course, such a select ion of t he  basic  surface i s  
not su f f i c i en t ly  general, nor i s  it opthum. Other  methods of choosing the  
bas ic  surface are possible and have various advantages (Bibl.15, 21, 24). We 
shall not go i n t o  t h i s  question here. 

In se t t i ng  up t h e  equations of motion, the  conditions of connectivity /I51
of the  layers  (11, 8.14) must be borne in mind. Of special  importance here i s  
t h e  choice of the generalized coordinates such as t o  ensure maxi" simplicity 
t o  the  solution of t he  problem. We note t h a t  t he  conditions (11, 8.14) impose, 
upon the  generalized coordinates, r e s t r i c t i o n s  t h a t  do not depend on the  l a w  of 
motion, and must be considered as equations of constraint. O f  the  various above 
methods of introducing the  generalized coordinates, l e t  u s  discuss t h e  method 



indicated i n  Sect.24.2 and subject this method t o  a cer ta in  extension. Instead 
of eq. (24.33 ), l e t  us set 

(25.1) 

where 0, i s  the  Heaviside uni t  function, wr(k) are the  excess generalized coordi
na tes  introduced t o  s a t i s f y  the  conditions of connectivity of t h e  layers ,  z, 
a r e  the  z-coordinates of t he  surfaces of contact, and m is the  number of these 
surfaces. 

Making use of eqs.(24.34) - (24.36b), We find 

u p  +zuy  +	-1 z*up+-23ui1311 + 
2 6 

It i s  c l ea r  from eq0(25.2a) t h a t  t he  displacement vector components and 
the der iva t ives  o , u , ( i  = 1, 2)  a r e  continuous functions of z. The quan t i t i e s  
o,u, have f i n i t e  d i scon t inu i t i e s  on t r ans i t i on  across  the in te r face  of the  
layers.  The magnitude of t he  discont inui ty  i s  (1- k,4 ) X #)(xi, t). We can 
f ind the  quan t i t i e s  wit)from the  condition of cont inui ty  of the  s t r e s s  tensor  
components u13, which we w i l l  demonstrate: 

L e t  t he  8-Goordinates on the  boundarg surfaces of the k th  l aye r  be and 
z, ; l e t  the La” e l a s t i c  constants of the  k th  l aye r  be lk and ~ r ,. Then f o r  t he  
(k + l aye r  we have 

According t o  Hookets law,  the  stress tensor  components ulg i n  the  k th  and 

- .. .....I. . - . .. .. .. .... .. _. . . . . 



(k + l aye r s  on t h e i r  in te r face  are expressed by t h e  following equations:= 

The conditions of continuity of the  s t r e s s  tensor components lead t o  the  
following values f o r  the excess coordinates w/k)(.j = 1, 2, 3):  

Equations (25.4a) - (25.4b) permit us  t o  express the  excess coordinates wj'") 
i n  terms of the  independent coordinates up). As an example of t h e  application
of t h e  analyt ic  methods here presented, l e t  us  consider the equations of  vibra
t i o n  of a two-layer shell .  

Section 26. Equations of Osci l la t ion o f  the  Two-Layer Shel l  

Consider a s h e l l  of constant thickness 2h, consisting of two layers  of re
spective thickness hl and Using eqse(25.2a) - (25.2b) and performing a 
pa ra l l e l  displacement t o  the basic  surface, we find, by analogy t o  eqs0(24.37a) 
- (24.3%): 

(26 .lb ) 
Eiquations (26.la) - (26.lb) permit us t o  obtain t h e  ana ly t ic  expressions 

for vi and V3vl in t h e  first and the  second layer. We have 
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L e t  us now eliminate from these equations the excess coordinates wp), mak
ing use of eqs.(25.&a) - (25.4b). We have 

Here we have introduced the  notation 

Further, we f ind 

(26.5) 

(26.6a) 



I n  se t t i ng  up these expressions we r e t a i n  all terms containing the  gener
alized coordinates L@ ( j  - I, 2, 3; m = 0, 1, 2, 3)  regardless  of the  conven
t i o n a l  order of smallness in these terms i n  connection with the  presence of a 
fac tor  of the  form hf an. 

L e t  us now put eqs.(26,6a) - (26.6b) i n t o  t h e  following form: 

where 

Further,  
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(26.1ck ) 

(26.11) 


(26.12) 


Equations (26.8), together with eqs.(26.9a) - (26.10) do not formally d i f 
f e r  from eqs.(15.5), and the  following re la t ion  obtained by expansion of the  
displacement vector components i s  a tensor ser ies .  The difference i s  tha t  t h e  
quan t i t i e s  VJ0 and V,' a r e  piecewise-continuous functions of z, which a r e  con
s t an t  on the  segments of a normal t o  the bas ic  surface enclosed within the  
layers. 

L e t  u s  now f ind the  s t r e s s  tensor  components, noting t h a t  i n  covariant d i f 
fe ren t ia t ion  with respect t o  XJ( j  = 1, 2) the  quan t i t i e s  z and u0(z - hl ) can 
be considered as constants. W e  have 

3 .
I 

T i 8  zz m! Z m y )  (i, k =  1, 2, 3). (26.13) 
m-0 

The right-hand s ide  of eq.(26.13) does not d i f f e r  i n  form from a segment of 
a Taylor tensor  ser ies ,  but t he  coef f ic ien ts  l i m f k ,  except 7.f ', a r e  piecewise
continuous functions of z, constant on the  segments of a normal t o  the  bas ic  
surface enclosed between the  boundary surfaces of t he  layer. The coef f ic ien ts  
T (m)ik are expressed by t h e  equations 
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=AgrrvrV$" + ( A+2B) YL"'") 
(26 .14c) 

(i, h, r -- 1, 2: m -0 ,  1, 2, 3; do not sum over i and k1). 

Equations (26.14a) - (26.14~) a re  analogous t o  the  re la t ions  (15.12a) 
(l5.l2c), found f o r  a single-layer homogeneous shel l .  These equations, taken 
together with eqs.(26.9a) - (26.1clb) and (26.12), permit us t o  express the  
stress tensor components i n  t h e  first and second l aye r s  in terms of t h e  gener
al ized coordinates u p )  and t h e i r  derivatives.  

Consider the  var ia t ions  6v, : 

3 

za, = -. 
1 z"6 V!" 
m! 


m-0 

( i =  1, 2, 3). 

From eq. (26.12) there  resul ts ,  by analogy, /156 

The var ia t ions  6Vjo)  and 6V,(1) are piecewise-continuous functions of I, con
s t an t  on the segments of the normal t o  the bas ic  surface included within the  
layers. This does not permit t h e  use of the  quan t i t i e s  VP) as new generalized 
coordinates. On the  bas i s  of eqs.(26.9a) - (26.9b) and (26.1Oa) - (26.lCb), WE 

have 

(26.16a ) 

(26.16b ) 

where 

I 1 - 1  I II 



-- -- 

(26.17a) 

The presence of covariant derivatives on the right-hand sides of equations 
(26.17a) - (26.1%) leads t o  fundamental d i f f i cu l t i e s ,  as will be seen from 
what follows. 

2h 

p m i i k  
111 ! 

J Z,+ (1 k,z) (1 -k,z )  dz (26.18a) 
0 

(i, k - 1, 2, 3); 

(26.18b) 

(26 .18c) 

/157
Ktm)I3-

m! 
L1*Zm?.i:l (1 - k,z) (1 - k,z )  dz 

(26.18d)
l 0 i 
( i = l ,  2, 3; i ,  k = l ,  2). 

Further, l e t  us  consider the quant i t ies  connected with the i n e r t i a l  forces: 

(26.19a ) 
2h 

(26.19b ) 
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-- 

-- 

2h 
a2v3 

m ! dt2  (1 -k,z)(1 -R,z)dz 
(26.19d)

0 

The quant i t ies  determined by eqsm(26,18a) - (26.19d) are expressed i n  
terms of t h e  generalized coordinates up) ,  the  generalized accelerat ions u/d , 
and t h e i r  der ivat ives  wi th  respect t o  the  coordinates xJ of the  basic  surface of 
t he  she l l  by means of formulas (26.8), (26.14a) - (26.15). 

L e t  us  now introduce the  generalized forces. We put 

2h 
1 

Q(m)i  =	-S p P P  (1 - k , z )  (1 - k , z )  dz+Xf+,  (1 -2k,h) xm! 
0 


x ( 1  -2k,hj (2h)m; 
(26.20a ) 

p!miR =nt! If y d P z m  (1 -k , z )  (1 - k , z )  dz -t x;+)x 
0 (26.21b )x (1 2/<,h)(1 - 2k&) (2/z)*; 

2h 

p i 3  --- J - I I 2 p z -( I  k,z) (1 -k,z)  dz +[&I XL)x 
J I L  ! 

0 (26.21~)x (1 - 2 k l h )(1 - 2kJz) (2iz)m (J' =1, 2; m =0, 1). 



where [p12], [yr2] and [A , , ]  a re  the  values of  p12, y12 ,and )clz a t  z - 2h. 

On t he  contour surface we determine t h e  following quant i t ies :  

2h 

L"" = m -
1 
! pl2Xi(p(2)dz, (26.22b) 

0 

Nl ! TTl2FqL ( m ) 3  2- (2)dz, (26 .22c )
0 

2h 

( i =  1, 2, 3; j =  1, 2). 

where q ( z )  i s  expressed by the  formula (24.26~). 

Let us  now consider again the general equation of dynamics (15.1), making 
use of eq.(24.11) i n  i t s  transformation. The transformation of eq.(15.1), i n  
t h i s  case, has two stages. The first stage leads t o  the following result: 
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(26.23) 

where 

3 . 

(26 24 ) 

The presence, on the  left-hand s ide of the  var ia t iona l  equation (26.23), 
of terms wi th  the  f ac to r s  g r v ,  (6vr ) I z x h ,  and O, ( 6 ~ 3) I , = , ,  i nd ica tes  substan
t i a l  differences between t h e  cases considered e a r l i e r  and this problem. These 
f ac to r s  can be eliminated from the surface in t eg ra l  by means of integrat ion by 
par ts ,  i.e., by repeating the  transformation of eq.(15.1), leading t o  equation 
(26.23). Th i s  i s  the  second stage of the transformations mentioned above. The 
use of term-by-term in tegra t ion  does not require t h a t  t h e  conditions of d i f f e r 
e n t i a b i l i t y  of the surface load components be sa t i s f ied ,  since t h i s  load i s  
eliminated from the sums -h Pc0) + P(') and -hl R ( O )  + R ( l )  The f ac to r s  
gr'Vr' (6vr )I = h, and Ok (6v3 )I z =  hi will, however, l ikewise en te r  under the sign
of in tegra t ion  over the  contour C of the bas ic  surface. Here, these terms can
not be excluded. Consequently, there  i s  a subs tan t ia l  addition t o  the na tura l  
boundary conditions. 

We w i l l  discuss this question l a t e r  i n  the  text, but  f i r s t  l e t  u s  s e t  up 
t h e  system of d i f f e r e n t i a l  equations of  motion of the  two-layer s h e l l  which re
sults from eq.(26.23) a f t e r  t he  second stage of transformations. 

Section 27. Di f fe ren t ia l  Equations of Motion .-of a Two-Layer S h e l l  /160 
We introduce the  notation: 
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Performing the above transformation on the variational equation (26.23), 
we f ind by the usual method the following system of differential equations of 
motion: 
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(5, k = 1, 2; do not  sum over k t )  (270%) 

The s y s t e m  of equations (27.2a) - (27.5b) cons is t s  of twelve d i f f e r e n t i a l  
equations of t he  t h i r d  order in twelve unknown funct ions u p )  . The der iva t ives  
entering i n t o  0,uk and v k  Z are of the highest order. The general order of the  
system is  36. Obviously, the  order of the  system i s  so high because a l l  the  
terms containing the generalized coordinates introduced by us  were retained i n  
t h e  equations, regardless  of t h e i r  conventional value, deterxnined by the  expon
en t  m i n  the  f ac to r s  H. 

O f  course, such a system of equations i s  unsui table  f o r  prac t ica l  calcula
t ions,  but it my s t i l l  be used f o r  purposes of comparison wi th  other  systems 
obtained by various simplifications.  A qua l i t a t ive  ana lys i s  of eqs. (27.2a) 
(27.5b) may likewise introduce new elements i n to  the  representation of the  os
c i l l a t o r y  processes in a layered she l l .  

Section 28. Natural Boundary Condition 

Two bas ic  forms of boundary conditions result from the  var ia t iona l  equa
t i o n  (26.23). 

1. With Contour Surface Kinematically not Free 

On the unfree contour surface the  quan t i t i e s  uJ’“ must be assigned. This 
assignment determines t h e i r  der iva t ives  wi th  respect t o  the  a r c  of the con
tour  C. From t h e  composition of the  integrand expression i n  the in t eg ra l  over 
the  contour C i n  eq.(26.23), it i s  c l ea r  t h a t  on the  unfree part of a contour 
surface we must a l s o  prescfibe the derivative,  with respect  t o  the normal t o  
the  contour, of v, and of t he  sum v,. By this assignment, together wi th  the 

ent of the functions u[;) , the  covariant der iva t ives  V,V, J Z 5 , , ,  andassirvkv3 Z.h, ,  a r e  determined on the  contour C. The t o t a l  number of boundary condi
t i o n s  here i s  not single-valued. 

I n  fac t ,  we may prescribe a l l  the der iva t ives  with respect t o  the normal 
t o  the  contour C of t he  quan t i t i e s  uJ’” . I n  t h a t  case, we w i l l  obtain twenty-
four  boundary conditions. This number of boundary conditions does not c o r m - m  
spond t o  the order of the  system (27.2a) - (27.5b). 

If we d i r e c t l y  prescr ibe the normal der iva t ives  of grv; I z . h ,  and v3 l2. h,, 

then we w i l l  have fourteen boundary conditions. The uniqueness of the solution 
of the  boundary problem i n  t h i s  case requires f u r t h e r  investigation. 

2. With the  Contour Surface Free 

If the boundary surfaces  of the she l l  a r e  free from kinematic constraint ,  
then the  var ia t iona l  f i e l d  ofbuj’) i s  e n t i r e l y  a r b i t r a r y  within the region w and 
along its boundary. An a r b i t r a r y  var ia t iona l  f i e l d  of 6uJ@)may a l so  be repre
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sented beyond the  boundary of t he  region W. This shows t h a t  on the  boundary 
the  va r i a t ion  gr6vrV, 1 I I must be regarded as an a rb i t ra ry ,  independent qnan
tits. 

In  assigning the  var ia t ions  6uj(') on the  contour surface, t he  der iva t ives  
6vkv3 w i l l  be bound by a linear r e l a t ion  r e su l t i ng  from the  expression of t h e  
der iva t ives  of 6v, over t he  a r c  of the  contour C. For this reason, fourteen 
boundary conditions can be obtained from eq. (26.23) : 

(28.34 

The coef f ic ien ts  4, are functions of t h e  a r c  of the  contour C. They are/163 
determined a f t e r  elimination of one of the der iva t ives  ok 6 ~ 3I z = h  by means of 
the  expression of t he  absolute der iva t ive  of 6 ~ 31 z - h  over the  a r c  of the  con
tour  s. The quan t i t i e s  N ( ' ) 3  are derived from the  term-by-term in tegra t ion  of 
the  " n a n d  under the  in tegra t ion  s ign i n  eq.(26.23), containing the  absolute 

(Cl
der iva t ive  of 6v3 I z = h l  over the  a r c  S. This summand also r e s u l t s  from elimina
t i o n  of one of the  der iva t ives  6v3 1 z=h, ,  as already mentioned. We w i l l  not  
give the  d e t a i l s  on these calculations,  but  r a the r  pass t o  b r i e f  conclusions 
generalizing the  various methods of reduction of the three-dimensional problems 
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of  the e l a s t i c i t y  theory t o  two-dimensional problems. 

Section 29. Classical  Theory of She l l s-

The invest igat ion made by u s  na tura l ly  includes a b r i e f  ana lys i s  of t he  
c l a s s i ca l  theory of s h e l l s  and of cer ta in  works t h a t  have expanded the f i e l d  of 
t h i s  theory. We will discuss  the  character izat ion of t h e  ana ly t ic  propert ies  
of the fundamental quan t i t i e s  which a r e  the object  of invest igat ion i n  the  clas
s i c a l  theory, and on the  methods of investigation. 

1. Forces and Moments 

In  the  Kirchhoff-Love theory of shel ls ,  t h e  s t r e s s  tensor  i s  replaced by a 
system of forces  and moments determining the pr inc ipa l  vector and the  pr incipal  
moment of the  i n t e r n a l  forces  i n  the  shel l ,  reduced t o  a point ly ing  on the  con
tou r  of an element of the middle surface and referred t o  u n i t  length of the  
corresponding coordinate l ine .  

It i s  easy t o  convince ourselves t h a t  t he  components of the forces  and mo
ments so determined are not components of vectors  obeying the  ru les  of trans
formation of tensor  quant i t ies .  The forces  and moments can evidently be con
nected wi th  the  vector  components of the stress tensor (Bibl.8). We s h a l l  not  
go in to  d e t a i l s  on this approach, 

After constructing the vectors  of the s t r e s ses  ac t ing  on the contour sur
faces  of an element of the she l l ,  we w i l l  subject them t o  p a r a l l e l  displacement 
t o  the bas ic  surface, on the  b a s i s  of ( I ,  11.18), and will then r e l a t e  them t o  
u n i t  length of the  corresponding coordinate l ine .  We obtain 

+ h  
n 

Here t h  index (k) ind i  a t e s  the number of the coordinate l i n e  normal t o  that(164 
pa r t  of the  contour surface of the s h e l l  element on which the  s t r e s s  vector 
ac ts ,  yielding t h e  quan t i t i e s  Ti(k) and p ( k .  , The other  notat ion i s  conventional. 

Further, making use of (I, 8.6), which def ines  the  covariant components of 
a vector product, we f ind the  components of the moments of the  annexed couples, 
produced when the  stress vectors a re  reduced t o  the bas ic  surface, re fe r r ing  
them t o  u n i t  length of the Corresponding coordinate l ine .  Neglecting all terms 
t h a t  a r e  nonlinear w i t h  respect t o  	the s t r a i n  tensor  components, we f ind 

+,h z 

M ~ ~ ~ , = - g l l l , ’ ~ JJ o 2 ’ ( 1  - z k , ) ( I  - - zk2)2dx3dz= 
- h  0 
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1 --Zzk2) dz; 

muat ions  (29.la) - (29.2f) d i f f e r  i n  form from those familiar from the  
c l a s s i ca l  theory of shelld6. But t h i s  difference i s  not substant ia l ,  since 
most works on s h e l l  theory replace the  components of  t he  tensor quant i t ies  by 
t h e i r  "physical components", which may be obtained by using eqs.(I, 5.20) - (I, 
5.2) and noting the  remark i n  (I, Sect.7). W e  have, f o r  example, 

and a l so  

Subst i tut ing the  expressions ( a )  and (b)  i n t o  one of eqsD(29.1a), we 
f ind 

T,lj.xl=-hs*a.slxl (1  -zk,)  dz. 

The re la t ion  ( c )  i s  known from the  c l a s s i ca l  theory. B y  analogy, put t ing 

36 	 C f .  Arthur Love, The Mathematical Theory of E la s t i c i ty ,  ONTI ,  1935, o r  
(Bibl.D5,11)D 
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. 
we f ind.from eq.(29.&): 

+h 

M(l)Sl=- zaxlx¶(1 -zkJ dz. 
-h 

This i s  the  well-known expression f o r  the  to r s iona l  moment. Thus, the  
method employed here, based on the  theory of parallel displacement of tensor  
quant i t ies ,  l eads  t o  the results of the c l a s s i c a l  theory i f  we remain within t h e  
limits of the l i n e a r  theory of e l a s t i c i t y .  I f  we r e t a i n  the nonlinear terms, 
however, this method leads  instead t o  r e s u l t s  t h a t  r e f ine  t h e  c l a s s i ca l  theory. 
as shown by us  elsewhere (Bib1.23a, b). W e  s h a l l  not  consider the  nonlinear 
theory here . 

We w i l l  now discuss  the  connection between the  forces,  moments, and the 
quantities T ( m )l k  as determined by eqs. (20.4a) - (20.4~).  The quan t i t i e s  
T ( O )  i J  (i, j = 1, 2) a r e  connected by l i n e a r  r e l a t ions  with the  forces  and mo
ments. In  fac t ,  eqo(2O.4a) y i e lds  

+ h  

Ti0)'j=J dj(1- k i Z )  (1 -k,z) (1 -- k,z) dz 
-h 

c k  


From t h i s  t he  above-mentioned r e l a t ion  i s  obtained. 

The q c a n t i t i e s  T ( l )  i J  cannot be expressed i n  terms of the forces  and mo
ments. This also applied t o  t h e  quan t i t i e s  T(m) i 3  and T(') 33 . We note t h a t  
only i n  the approximate theory which contains e r r o r s  t h a t  permit neglecting a l l  
tems of  t h e  order of hk, , are the  quan t i t i e s  T ( O )  1 J and T ( O )  proportional t o  
the forces,  and the quan t i t i e s  T ( l )  i J  proportional t o  the  moments. 

A l l  the  above again leads  t o  the  conclusion t h a t  the approximate replace
ment of the  stress tensor  by a system of forces  and moments i s  j u s t i f i e d  only 
i n  the case of." a preliminary introduction of simplifying hypotheses analogous 
t o  those of Kirchhoff-Love. For t h i s  reason, various general izat ions of the 
c l a s s i ca l  theory involving the use of reduced forces  and moments a r e  of  l i m - /166
it&value. In par t icu lar ,  the  nonlinear theory of p l a t e s  and shel ls ,  con
structed w i t h  the  use of reduced forces  and moments, contains e r ro r s  t h a t  de
crease the significance of t h e  introduction of the  nonlinear terms. 



2. Equations of Equilibrium and Motion 

The shortcomings connected with the  descr ipt ion of the  stressed s t a t e  of 
a s h e l l  element by a system of forces  and moments are especial ly  pronounced 
when we consider t he  equations of motion or,  i n  par t icular ,  t he  equations of 
equilibrium of t h i s  element. We r e c a l l  t h a t  an element of a s h e l l  has a f i n i t e  
dimension i n  the d i r ec t ion  of the  l ine 9 .  The equations of motion of an ele
ment of the s h e l l  i n  t he  c l a s s i c a l  theory are set up a s  the  equations of a 
r i g i d  body. They r e s u l t  from the  theorem on t h e  motion of the  center of iner
t i a  of a s h e l l  element and the  theorem on the  var ia t ion  of i ts k ine t i c  moment. 
Clearly such an approach t o  s e t t i n g  up the  equations of motion i s  based on the  
preliminary appl icat ion of one of two methods of reduction of the  three-
dimensional. problems of the  theory of e l a s t i c i t y  t o  two-dimensional problems; 
t h i s  i s  t h e  method based on the  appl icat ion of the Kirchhoff-Love hypotheses,or 
expansions i n  tensor  series followed by elimfnatAon of the  der iva t ives  V,... 
V3u, . 
whole", by defining the  general  statement of  .iic reduction problem, permits ex-

Essentially,  t he  use of t he  equations of motion of an element "as a 

clusion of eqs.(7.4b) and (7.4d) from considzration. 
f a c t  i n  Sect.7 and i n  the  subsequent discussion. 

We have mentioned this 

V- s h a l l  not here consider a l l  the  c l a s s i ca l  equations of motion of a 
she;.'. element, but  r a the r  focus our a t t en t ion  on the s i x t h  equation, containing 
t'.a component of the  moment of external  forces P?, referred t o  u n i t  area of the  
bas ic  surface of t h e  shel l .  

Assume t h a t  t h e  deformed s h e l l  i s  *.--?;'a~*ir.edt o  the system of coordinates xi. 
The coordinate l i n e s  1?. and x? on the dafomed bas ic  surface coincide with i t s  
l i n e s  of curvature, while the  vector e3 nf the  coordinate b a s i s  i s  directed 
along the normal t o  it, and i s  equal, modulo, t o  unity. Then, we may make use 
of  eqs.(29.la) - (29.2f), bu t  we must remmber t h a t  a l l  the  quan t i t i e s  enter ing 
i n t o  them r e l a t e  t o  the  deformed she l l .  

Following our o ther  work (Bib1.23a, b), we shall show t h a t  the s i x t h  equa
t i o n  of equilibrium i s  not  s a t i s f i e d  i f  the component $ of the  pr inc ipa l  moment 
of external  forces  does not  vanish. In connection with the vanishing of M(1).3 

in these formulas (29 .2~)  and (29.2f), t h e  s ix th  equation of eqwl ib
s y s t e m  of coordinate selected by us  has the  following form (see 

Bi b l  .23a, b ): 

Making use of eqs.(29.la) - (29.2f), we find 



J . -h, 

In  these equations, hl and h, a re  the d is tances  along t h e  normal from the  de
formed basic  surface t o  the  boundary surfaces. 

Further, l e t  u s  use eqs. (4.4): 

Subst i tut ing in to  eq.(29.3) the r e l a t ion  (g) - (.e>, we f ind 

Consequently, eq. (29.3 ) reduces t o  the condition 

~3 =0. (29.4) 

Thus, the s y s t e m  of forces  and moments (29.la) - (29.2f) reduced t o  the  
bas ic  surface, cannot balance the  external  forces, i f  they a r e  reduced t o  a /168 
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couple lying i n  a plane p a r a l l e l ' t o  the  plane of a tangent t o  the  bas i c  sur
face'k. 

W e  sha l l  now make two remarks on t h e  resul t .  

1. We have used a special  select ion of the  coordinate system connected 
w i t h  the deformed shel l .  However, t he  invar ian t  propert ies  of tensor equations 
of equilibrium permit us  t o  a s s e r t  t h a t  t h e  result i s  va l id  in any system (I, 
Sect. 6 ). 

I O f  course, i f  t he  choice of the  coordinate system i s  arb i t ra ry ,  we w i l l  
no t  obtain eqs.(29.4). But in t h i s  case, only two of the  three equations of 
equilibrium containing moments of i n t e r n a l  forces  w i l l  be independent. 

2. I f  the  component $ vanishes, then the  s ix th  equation of equilibrium is  
s a t i s f i e d  iden t i ca l ly  only on the b a s i s  of the expressions of forces  and mo
ments (29.la) - (29.2-f). The iden t i ca l  s a t i s f ac t ion  of t h i s  equation i s  en
t i r e l y  unconnected with the r e l a t ions  between forces,  moments, components of 
t h e  s t r a i n  tensor of the bas ic  surface, and the  tensor  of var ia t ion  of i t s  cur
vature (Section 10) resu l t ing  from Hookets law. For t h i s  reason, the i d e n t i c a l  
s a t i s f ac t ion  of t h e  s ix th  equation of equilibrium by r e l a t ions  r e su l t i ng  from 
equations approximately expressing Hookers law must be considered only a s  an 
indicat ion t h a t  the  approximation adopted can i n  f a c t  be sa t i s f ied .  

Returning t o  the  introductory remarks on the equations of equilibrium and 
the  motion of the  she l l ,  we note t h a t  t h e  condition (29.4) imposed on the  ex
t e r n a l  forces reveals  t h e  insuff ic iency of the  descr ipt ion of the s t ressed s t a t e  
of the she l l  by a system of forces  and moments reduced t o  the bas ic  surface. 
This insufficiency. has no e f f e c t  on the solut ions of most technical problems of 
t he  s h e l l  theory, since i n  these problems the condition (29.4) i s  usual ly  satis
f ied.  

Section 30. 	 Brief Survey of Recent Results of Reducing the  
Three-Dimensional Problem of the Theory of 
a a s t i c i t y  t o  the Two-Dimensional Problem of 
the  Theory of Shel l s  

I n  conclusion, l e t  u s  give a character izat ion of the r e s u l t s  obtained i n  
solving the reduction problem during the l a s t  quar te r  century. Here, we w i l l  
not  analyze the  outstanding work by F.Krauss wr i t ten  i n  l 9 2 F  but merely re
mark t h a t  he posed the  problem of constructing a s t a t i c s  f o r  s h e l l s  t h a t  d id  
not  r e l y  on the  Kirchhoff-Love hypotheses. 

* This was first establ ished by a d i f f e r e n t  method by F.Krauss in h i s  paper 
Fundamental Equations of Shell Theory, Math. Ann., Vol.101, 1929. This proof 
w a s  mentioned by us  elsewhere (Bib1.23a) in 1938. See a l so  the  monograph by 
V .Z .Vlasov (B i b l  .3a). 

Y& See preceding footnote. A b r i e f  ana lys i s  of Krausst invest igat ions w i l l  be 
found elsewhere (Bib1.23b). 
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1. Reduction by the  Use of Series.  Application of t he  
DfAlembert-Lagrange Pr inc ip le  

In 1938 - 1940 (Bib1.23a, b )  one version of the  ana ly t ic  s t a t i c s  of s h e l l s  
was studied, based on the  use of expansions of stress and strain tensor compon
en t s  in YacLaurin tensor  series i n  powers of the coordinate x? = z. T h i s  meth
od, w i th  the necessary general equations, i s  given a t  the beginning of this 
Chapter f o r  dynamic problems. 

The reduction method based on the  expansion of the  wanted quant i ty  i n  
power se r i e s  of z was applied t o  problems of t he  s t a t i c s  of s h e l l s  and p l a t e s  
by A.I.Lurtye i n  1940 - 1942 (Bibl..25a, b). I n  one paper (Bibl.2%), he stud
i ed  t h e  equilibrium of a plane F l a t s  and showed t h a t  t he  displacement of any 
point of the  p l a t e  could be expressed i n  terms of cer ta in  functions determined 
by the  loads on the faces  of the  p l a t e  ( f o r  z = f h) i n  the  form of s e r i e s  f o r  
which the  form of the  nth term was established. This same method was employed 
i n  a monograph (Bibl.9b) i n  studying the equilibrium of a plane Layer. The re
sults were  obtained by t h e  symbolic method. The work of A.I,Lurfye confirms 
the  significance of  t he  reduction method based on an expansion i n  power s e r i e s  
of 2. 

We find the idea of t h e  combined use of the  general equation of s t a t i c s  
and expansion i n  power s e r i e s  of a of the s t r e s s  and s t r a i n  tensor components, 
w i t h  t h e  object  of  solving the  reduction problem (Bibl.3aP. Here the hypoth
eses  of Kirchhoff-Love a r e  used, and t h e  s h e l l  element i s  regarded as an abso
l u t e l y  r ig id  body wi th  six degrees of freedom. Clearly, under these assump
t ions,  the appl icat ion of the general equation of s t a t i c s  introduces no substan
t i a l l y  new elements i n t o  the  solut ion of the  problem of reducing the three-
dimensional problem of e l a s t i c i t y  theory t o  a two-dimensional problem, and a s  a 
r e s u l t  we obtain the  equations of the  c l a s s i ca l  s t a t i c s  of shells.  

4
This method was f u r t h e r  developed by Kh.M.Mushtary and 1.G.Tereplov 

(Bib1.27), who studied the  reduction problem f o r  t h e  s t a t i c  problem i n  nonlin
e a r  formulation, using expansions of the  displacement vector components ii1 se
ries in powers of t h e  var iable  2 = Z. We used a s imi la r  device i n  the l i n e a r  
f o r m l a t i o n  in Sect.15 - 23, when we investigated the  problems of elastody
namics. 

The general equation of dynamics (15.1) holds l a t e n t  p o s s i b i l i t i e s  f o r  t h e  
development of a reduction theory. Certain appl icat ions of t h i s  equation t o  the  
new formulations of the  dynamic boundary problems of s h e l l  theory have already 
been indicated by u s  i n  SectO2EW*. Of course, even these r e s u l t s  do not ex- / l 7 O  
haust dl1 t h e  f a c t s  obtainable from eq.(15.1). 

* The general equation of dynamics was evidently applied by A.Basset t o  con
s t ruc t ion  of the  equations of the  c l a s s i ca l  theory of she l l s ,  f o r  cyl indrical  
and spherical  shel ls ,  as far back as 1890. See A.Love, Mathematical Theory of 
Elas t ic i ty ,  ONTI, 1935, pp. 559-561. 

* The reader will f ind  several  data  on the development of invest igat ions on 
t h e  reduction problem i n  another paper (Bib1.26). 
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Methods of reduction based on the use of se r ies  expansions have been de
veloped a s  early as 1942 by Epstein, Kennard, and others who studied the dy
namics of cylindrical  she l l s  and were apparently unacquainted with the work of 
Soviet scientist*. Beginning from about 1948, these generalizations, mainly 
of the dynamics of p la tes  and she l l s ,  became widespread everywhere. The cause 
of this new in t e re s t  i n  studies which cer ta in  sc ien t i s t s  formerly classi f ied a s  
theoret ical  investigations without pract ical  value, was the need t o  establish a 
dynamics of p la tes  and she l l s  suitable f o r  the study of various high-frequency 
vibrations and t ransients  of dynamic loading. 

It must be mentioned again tha t  p r ior i ty  i n  the development of the gener
a l iza t ions  of the theory of plates  and she l l s  belongs t o  Ukrainian and Soviet 
s c i en t i s tH-. 

2. The "Semi-Inverse" Method of Reduction 

During the last  decade, a new trend has developed i n  the methods of re
duction of the three-dimensional problems of the theory of e l a s t i c i ty  t o  the 
two-dimensional problems of the mechanics of p la tes  and shells. These methods 
may be called vtsemi-inversevy, since t h e i r  d i s t inc t ive  feature i s  the prelimin
ary determination of cer ta in  components of the s t r e s s  o r  s t r a i n  tensor by cer
t a i n  functions of the coordinate 2 = z. 

In chronological order, i n  this respect, we must l i s t  the work of E.Reiss
ner on the theory of equilibrium of th in  plate-. An analysis of Reissnerts 
work and its possible generalization i s  given i n  another paper (Bibl.20a). /171
Reissner expressed components of  t h a t  par t  of the stress tensor tangential t o  
the middle plane by l i n e a r  functions of t h e  coordinate z, and determined the 
components of the normal part  from the equations o f  equilibrium, finding the 
indeterminate elements of the solution from the conditions on the boundary sur
face-. He thus obtained a solution satisfying the conditions of equili

* a )  P.S.Epstein, On the Theory of Elast ic  Vibrations i n  Plates  and Shells. J. 
Math. and Phys., Vol. 21, 1942 

b )  E.H.Kennard, The New Approach t o  Shell  Theory: Circular Cylinders.IAM, 
V01.20, No.1, 1953; Cylindrical Shells: Energy, Equilibrium, Addenda andErratum. 
IAM, V01.22, No.1, 1955; Approximate Ehergy and Equilibrium Quations f o r  Cyl
indr ica l  Shells. IAM, Vo1.23, No.4, 1956; A Fresh T e s t  of the Epstein Equations 
f o r  Cylinders. IAM, Vo1.25, No.4, 1958. See a lso  USSR Abstract Journal of Me
chanics, No.2, Abstract No.802, 1953* The generalized equation f o r  transverse vibrations o f  rods wi th  allowance 
fo r  the e f fec t  of shear and i n e r t i a  of rotation was  found by S,P,Timoshenko i n  
l921-1322. These resu l t s  were extended t o  the theory of vibrations of plates  
by Ya.S.Uflyand i n  his paper '?Propagation of Waves i n  Transverse Vibrations of 
Rods and Plates", PMM, Vol.XI1, No.3, 1948 
+swE.Reissner, a )  On the Theory of Bending of ELastic Plates. J. Math. And 
Phys., Vol.XXII1, 1944. b )  On Bending of m a s t i c  Plates. Quar. Appl. Math., 
V01.5, No.1, 1947 

The semi-inverse method of constructing the stress f i e l d  f o r  a she l l  of 
a rb i t ra rg  configuration was given by A.Love. Cf .  A.Love, Mathematical Theory 
of Elasticity.  ONTI, 1935, p.560 
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b r i m  of t h e  theory of e l a s t i c i t y ,  and boundary conditions of spec ia l  form on 
the  boundarg surfaces applying the  Castigliano principle,  s a t i s f i e d  in t eg ra l ly  
Saint-Venantqs compatibil i ty conditions, and derived t h e  na tura l  boundary con
d i t i o n s  on the contour surface. Thus, here the  semi-inverse method l ed  t o  a 
ra ther  complete and convincing analysis  of the  question. 

The semi-inverse method of solving t h e  reduction problem i s  also found i n  
the  work of S.A.Ambartsurnyan (Bibl.l6a-c), and A.A.Khachatryan (Bib1.33). 

I n  these studies,  t he  components ( i  = 1, 2)  of t he  s t r e s s  tensor were 
first expressed by the  product of a ce r t a in  prescribed function f ( z )  and the  
function tpi (xJ) ( j  = 1, 2) which had t o  be determined. The component d’3was 
taken as zero. The function f ( z )  was most of ten expressed by the  equation 

1
f (2)=-(22-h2).

2 

More general forms of the function f ( z )  w e r e  a l so  considered. 

The expressions f o r  f ( z )  similar t o  (a), as well  as the  condition t h a t  g3 
s h a l l  vanish, do not permit s a t i s f ac t ion  of the  boundary conditions on the  
boundary surfaces, except f o r  the  case when thyre i s  no load on them. 

The displacement vector components u* (i= 1, 2) were determined from the  
expressions f o r  t h e  components d3 on the b a s i s  of Hookeqs l a w  i n  terms of  the 
functions f ( z ) ,  cp* (xJ), and the  der ivat ives  of u3 wi th  respect t o  the  coordi
nates  XJ. T h i s  solved the problem of reduction, and the  fu r the r  formulation 
of the  problem proceeded i n  the  usual context of s h e l l  theory. I f  we turn  t o  
our approximation equations (7.5a) - (7.5b), it will be noted that, including 
terms wi th  the f ac to r  (z” - h2 ), these equations a lso  contain addi t ional  

terms depending on the  load on t h e  boundary surfaces and permitting sa t i s fac
t ion  of the  boundary conditions on them. 

The re la t ions  (7.5a) - ( 7 . 3 ~ )  confirm the app l i cab i l i t y  of t he  expression 
of the function f ( z )  by the  equation (a) in the  absence of loads on the  bound
ary  surfaces of t h e  shel l .  Even i n  t h i s  case, however, the  components 033 can
not be equated t o  zero. 

-~3 .  	Reduction by Determining the Coefficients of the  Expansion of the D i s 
placement Vector Compcnmt.s_______ i n  Ser ies ,  i n  Special  Functions of t he  z Go-
ordinate /172 

1.N.Vekua (Bibl.18) formulated the boundary problems of  t he  theory of 
she l l s  o f  variable thickness, solvable by calculat ing the  coef f ic ien ts  of t h e  
expansion of the e l a s t i c  d i s  lacement components i n  s e r i e s  i n  Legendre poly
nomials of the coordinates 2 = 2. The content of Sect.24 of the  present book 
also belongs t o  this trend. 

I n  Sect.24 we gave a method of determining t h e  coef f ic ien ts  of the Fourier 
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expansions of displacement vector components in trigonometric s e r i e s  over t he  
segment (-h, +h)  of a normal t o  the  bas ic  surface of t he  shell .  Here we used 
t h e  general equation of dynamics (15.1). Obviously, t h i s  general equation per
mits t h e  construction of equations f o r  determining the  coef f ic ien ts  of the  ex
pansion of the required quan t i t i e s  i n  s e r i e s  i n  any special  function, and t o  
f ind  t h e  general formulations of the corresponding boundary problems. 

4. 	 Generalized Fonrmlatfons of the Dynamic- .Problems of the  Theory of P la t e s  
and She l l s  

I n  the  last  decade, a new di rec t ion  has developed i n  the  dynamics of 
p l a t e s a n d  shel ls ,  with a cha rac t e r i s t i c  departure from the  c l a s s i c a l  formula
t i o n  of t he  corresponding boundary problem and t h e  use of refined equations. 
The problems t h a t  encouraged the development of this l i n e  of inves t iga t ion  were 
mentioned in Subsection 1of t h i s  Section. 

W e  s h a l l  not  analyze the  numerous inves t iga t ions  by Soviet and foreign 
authors i n  t h i s  f i e l d  of applied theory of e l a s t i c i t y .  These s tudies  were 
characterized by the des i r e  t o  obtain an approximate mathematical descr ipt ion 
of  cer ta in  r e s t r i c t e d  c lasses  of dynamic processes i n  she l l s ,  which with suf f i 
c ien t  accuracy r e f l e c t  t he  experimental f a c t s  and the conclusions from cer ta in  
exact solut ions of threedimensional  dynamic problems. 

A s  an example of the s tud ies  belonging t o  t h i s  trend, we might c i t e  o ther  
authors (Bib1.29,32) who used the  method given by us  (Bib1.23a,b) and extended 
it t o  the dynamic problem of the  theory of p l a t e s  and cyl indrical  shel ls .  The 
general theory of s h e l l s  was not touched i n  these studie+. The work of 
(Bib1.32) der ives  an approximate theory of wave processes i n  p l a t e s  and /173
shells which s a t i s f a c t o r i l y  represents  t he  experimental r e s u l t s  and the  con
clusions from the solut ions of three-dimensional problems. 

~ -Section 31. Comparison of Various Methods of -Reduction 

In  conclusion, we s h a l l  give a b r i e f  comparison of the various methods of 
reduction, demanding again optimum sa t i s f ac t ion  of the  equations of the mathe
matical theory of e l a s t i c i t y  by the  solut ions found from the equations of s h e l l  
theory. 

It i s  well known t h a t  exact solut ions of the  boundary problems of elas
t i c i t y  theory must s a t i s f y  the equations of motion, the Saint-Venant compati
b i l i t y  conditions, the  r e l a t ions  resu l t ing  from Hookets law, and t h e  boundarg 

* With respect t o  the  work of (Bib1.29) we must make two statements. 
a )  It i s  impossible t o  construct an approximate theory “free from hypoth

eses??, since any method of formulating an apprdximate theory w i l l  contain some 
a p r i o r i  postulate,  f o r  example the  postulate  t h a t  it i s  possible t o  base the  
theory on a f i n i t e  segment of a Taylor s e r i e s  expressing the  function t h a t  i s  
t o  be dete&ed. Thus, we can speak only of t he  r e l a t i v e  accuracy of an ap
proximate theory advanced. 

b )  The author r e f e r s  t o  the  work by Kennard and t o  another monograph 
(Bibl.3b), ignoring e a r l i e r  investigations,  although the  method given there  i s  
d i r e c t l y  connected with t h e  content of the au thor t s  own work. 

in 
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and in i t i a l  conditions, L e t  u s  now consider t he  approximate systems of equa
t i o n s  of the dynamics of s h e l l s  proposed by US. 

~~1. Equations Obtained by Use of Bpansion ~ in Tensor S e r i e s~ 

The b a s i s  of  discussion here i s  the  series expansion of the  displacement 
vector  components, In terms of the  coeff ic ients  of these expansions we ex
press  the  coef f ic ien ts  of t he  expansions i n  series of t he  strain and stress 
tensor  components, For this reason we sa t i s fy :  a )  t he  Saint-Venant compati
b i l i t y  equations; b )  Hookets l aw;  c )  the conditions on the  boundary surfaces  of 
t he  shell .  

The equations of motions are s a t i s f i e d  approximately, since we used them 
i n  the  first version only t o  detelmine the  coef f ic ien ts  of the  expansion i n  
tensor series of the  displacement vector  components, and subsequently used only 
f i n i t e  segments of these series. In the second version, which i s  close to the  
c l a s s i c d  theory, t he  equations of motion are used i n  the  in t eg ra l  form. 

2, Equations Resulting f r o m  the  DtAlembert-Lagrange Principle  

By analogy t o  t h e  preceding, here we s a t i s f y  the  Saint-Venant compatibili
t y  conditions and Hookets law, The conditions on the  boundary surface a r e  in
cluded i n  the equations of motion. The equations of motion are s a t i s f i e d  in
t e g r a l l y  and approximately i n  consequence of t he  r e s t r i c t i o n  of the n W e r  of 
degrees of freedom of  the  s h e l l  i n  the  d i rec t ion  of the  coordinates x? = Z. 

For comparison, we r e c a l l  t h a t  the  solut ions of t he  equations of the  /17L
s t a t i c s  of p l a t e s  given by E.Reissner s a t i s f y  the  equations of equilibrium of 
the  theory of e l a s t i c i t y ,  Hookets law, the  boundary conditions on the  boundary 
surfaces of the  plate ,  and i n t e g r a l l y  (approximately) t he  compatibility condi
t i o n s  (Bi b l  ,203). 

Consequently, each method of reduction permits u s  t o  f ind only an approx
imate solution of t he  threedimensional problem of the  theory of e l a s t i c i t y ,  
w i t h  the  character of the e r r o r  depending subs t an t i a l ly  on the  reduction meth
od, There i s  no method of reduction t h a t  does not  involve some assumptions ex
pressed in geometrical o r  ana ly t ic  form, 
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CHAPTER I V  /175 
APPROXIMATELY E Q U I V A ~ N TSYSTEN.5 

Section 1. Introductory Remarks 

The question of reducing t h e  three-dimensional problem of t h e  theory of 
e l a s t i c i t y  t o  a two-dimensional problem of the  theory of s h e l l s  is a special. 
case of the  more general problem of the a p p r o b t e  replacement of one material  
system by another which i s  close t o  the first one by some de f in i t e  cr i ter ion.  

For example, i n  reducing t h e  three-dimensional problem of t he  theory of 
e l a s t i c i t y  t o  a two-dimensional problem, we replaced t h e  three-dimensional 
e l a s t i c  continuum-shell by a ce r t a in  medium, having the  properties of con
t i n u i t y  i n  two-dimensional space and a f in i te  number of degrees of freedom i n  
the t h i r d  dimension. Thus t h e  shel l ,  i n  V.Z.Vlasovts terminology, i s  a 
discrete-continuum system (Bibl. 3b). This system approximately replaces the  
three-dimensional e l a s t i c  body. Clearly, the  problem of constructing approxi
mately equivalent systems i s  considerably broader than t h e  problem of reduc
t ion.  

The construction of approximately equivalent material  systems i s  re la ted  
i n  i t s  meaning t o  the  determination of a system of functions approximately re
presenting another prescribed system of functions. For t h i s  reason it i s  
natural  t o  use the  ana ly t ic  apparatus of the  theory of approximation i n  solving 
the  problem of constructing approximately equivalent systems. 

I n  t h i s  Chapter we s h a l l  consider t he  appl icat ion of ce r t a in  methods of 
t he  theory of approximation functions t o  the  finding of approximate analyt ic  
statements of t h e  dynamic boundary problems of t h e  theory of she l l s .  

Section 2. 	 First Nethod o E i n e a r  Approximation of the Components 
of the  S t r e s s  Tensor and the  Finite-Deformation Tensor 

1. On the  Construction of an Isotropic ,  Approximately Eadvalen t ,  
E la s t i c  Body 

I n  the theory of small deformations it i s  assumed t h a t  t he  nonlinear terms 
entering i n t o  the  composition of the components of the finite-deformation 
tensor (11, 2.11) can be neglected, without introducing a substant.ial e r ror  /176
i n t o  t h e  f i e l d  of s t resses .  

Here we shall consider the  l i nea r  approximation of t he  components of t he  
finite-deformation tensor by the  components of the  small-deformation tensor. 
Such an approximation is a consequence of the  construction of an  e l a s t i c  medium 
approximately representing t h e  motion of the corresponding elements of the  body 
considered i n  the  in i t ia l  formulation of some nonlinear problem of elasto
dynamics, by the  motion of i t s  elements. A s  a re su l t  we obtain a b e t t e r  f i e l d  
of s t r e s ses  than i n  the  theory of small deformations. 



Let us imagine t h a t  t w o  e l a s t i c  bodies with non-coinciding e l a s t i c  con
s t a n t s  have, i n  the undeformed s ta te ,  the same gmmetrical  form and dimensions 
and a r e  referred t o  i d e n t i c a l  systems of Lagrangian coordinates xi. Let the  
deformed s t a t e  of t he  first body be characterized by the  finite-deformation 
tensor D i k ,  and the  deformed s t a t e  of the second body by the  small-deformation 
tensor  6 1 k y  which en ters  i n t o  the  l i n e a r  p a r t  of the components of t he  
tensor D i ,  . 

We s h a l l  consider these bodies as approximately equivalent material  sys
tems i f  the  e l a s t i c  constants of the second bod? a r e  such t h a t  they satisfy the  
condition of the least-square deviation of t h e i r  spec i f ic  po ten t ia l  energies of 
deformation i n  some region C; of var ia t ion  of t he  tensor components $ ) k i ,  defined 
elsewhere (11, 2.5). We r e c a l l  t ha t  t h e  tensor  components Dik and a re  con
s t ruc ted  from the tensor components hi,as we have shown i n  Cnapter 11. 

The points  o f  t h e  region R a re  individualized by the  coordinates 

Consequently, t’ne region ;2 i s  a nine-dimensional space. Let us assume 
t h a t  each of the coordinates a k  var ies  from zero t o  some pos i t ive  and negative 
quant i ty  a ik ,  which may be selected, f o r  example, on the  bas i s  of the  require
ment k h a t  the f i r s t  body s h a l l  have no p l a s t i c  deformations. It i s  a l s o  pos
s i b l e  t o  use other methods fo r  se lec t ing  t h e  quant i t ies  a i k ,  based on kinematic 
considerations connected w i t h  t h e  r e s t r i c t i o n s  imposed on the components of n i k  
determined previously (11, 2.7). We s h a l l  make use of the kinematic r e s t r i c 
t i ons  i n  determining the  bound.aries of the  region R i n  the following subsec
t ion,  but  here we will use the condition of the absence of p l a s t i c  deforma
t ions .  

Let us assume f i rs t  t h a t  t ne  boundary of the region R i s  known. Making 
use of (11, 11.2a), and assuming t h a t  both bodies a r e  i so t ropic ,  we f ind  the  
specif ic  po ten t ia l  energy of deformation of the f i rs t  body: 

The spec i f ic  po ten t i a l  energy of the second body i s  expressed similarly: /177-

Making use of eqs . ( I I ,  2.5), (11, 2.6), (11, 2.11) and (2.1), we f ind  
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and a f t e r  elementary transformations we obtain 

Consider t he  in t eg ra l  

Let us f ind  the e l a s t i c  components X.i$ and ~9 of the second body from the  

31condition tha t  I sha l l  b e  minimum. Equating t h e  der ivat ives  %* and - , t oa p t  
zero, we obtain the following system of l i n e a r  a lgebraic  equations 

(2.6 


where 



It can be shown tha t  t he  determinant of t he  system of equations (2.6) i s  
nonzero. We can convince ourselves of this by determining the  e l a s t i c  con
s t an t s  1%-and p* from the  system (2.6). 

Since the  l inear iza t ion  performed here r e l a t e s  t o  the stressed-strained 
s t a t e  of one of the elements of a n  e l a s t i c  body, i .e. ,  since i t  i s  loca l ,  l e t  
us introduce a l o c a l  Cartesianrectilinearsystem of coordinates connected w i t h  
this element. I n  t h i s  system, the  components of t h e  metric tensor a re  ex
pressed by the  well-known equations : gi = 1; gik = 0 ;  (i# k). 

To simplify the  solut ion of this problem without confl ic t ing with i t s  
physical content, l e t  us subs t i tu te  f o r  t he  region of in tegra t ion  I; the  ex
tended region W, assuming t h a t  each of the  nine coordinates Xik var ies  from 
-a t o  +a, where a i s  the  grea tes t  of t h e  absolute values assumed by the coor
dinates xik on the  boundary of the region s1. Under t h i s  condition, the  re
gion R Will be included i n  Si. Let us find, under these assumptions, the ex
pressions f o r  t h e  coeff ic ients  bi, and b, determined by eqs.(2.7a) - (2.7b). 

From eq.(2.3a) we obtain 

3 - 3 3 

i-1 i = l  k-1 (2.8a) 

3 3 

r-1 j -1  

- 3 3 3 

-
i -1  k - l  j - 1  

3 3 3 3 

i-1 k = l  j - 1  q= l  

17b 


(2.8b) 

( 2 . 8 ~ )  

(2.8d) 
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W e  put 

Consequently, 

I n  calculating bi, a l l  terms containing odd powers of the variables Si1, 
m u s t  be excluded i n  advance, since the  limits of in tegra t ion  a re  symmetric. W e  
f i nd  

3 3 3 

1-1 k-1 j -1  (2.10a) 

3 3 3 

(2." 

To calculate  the nine-fold in t eg ra l s  entering i n t o  t h e  expression f o r  t h e  
coeff ic ients  of eqs. (2.6), i t  i s  appropriate t o  use approximation formulas. 
The ana ly t ic  propert ies  of the  in t eg ra l  expressions are very simple and permit 
the  use of formulas approximately expressing double and t r i p l e  integrals*. 

* C f . ,  f o r  instance, Sh. Ye. a e l a d z e ,  Numerical Methods of Mathematical 
Analysis, Gostekhizdat, 1953, p.507. 



Performing t h e  calculat ions,  we f i nd  

bI1 665,7a13; bI2=b,, z1161,0a13; b,, sz4847,0a13; 
(2.11.a) 

bl = (732,9A+561,2pj u15; b, (2890,Oh +2245,Cp) 
(2.11b) 

From t h e  system of equations (2.6) we obtain 

A* =A (1 +allu2)+pa,2u2; (2.12a) 

p*= laz,a*+p (1+ap2a2). (2.12b) 

where 
a],  -- 0,1057, aI2 0,061 1, 
Q ~ ,G 0,5709, =0,4485. 

The terms i n  a2 approximately determine the  e f f ec t  exerted by the nonlin
ear terms, entering i n t o  the components of t he  finite-deformation tensor, on 
t h e  stress-tensor components. Tnese terms are equivalent t o  a cer ta in  increase 
i n  the  Lame' constants. 

TrJe note t h a t  i n  t h e  case of the va r i a t ion  of xik over nonsymmetric i n t e r 
vals ,  terms l i n e a r  i n  a would enter  i n t o  eqs.(2.12a) - (2.12b). 

Now, on the  b a s i s  of (11, 4.5b), we can wri te  the  following re la t ions :  

Hence, we f ind  

or 


where 

Equations (2.1.l+), (2.15a) - ( 2 . 1 5 ~ )determine the  required l i n e a r  approx
imations of the stress-tensor components and of the finite-deformation tensor. 
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Several remarks will be given on the  results. I n  the  construction of a n  
e l a s t i c  body, approximately equivalent t o  a body with f i n i t e  deformations, we 
assumed t h a t  the  body t o  be constructed w a s  i so t ropic .  If we abandon this as
sumption i t  would be possible  t o  dispose of a l a rge r  number of e l a s t i c  con
s t a n t s  and decrease the  mean-square deviat ion of t he  spec i f i c  po ten t ia l  en
ergy i! from the po ten t i a l  energy iI+ i n  t he  region (2. Consequently, the  con
s t ruc t ion  of a body approximately equivalent i n  the  energet ic  c r i t e r i o n  t o  a 
body with f i n i t e  deformations W i l l  l ead  t o  the  consideration of an anisotropic  
e l a s t i c  medium. 

2. Connection with t h e  Theory of Optimum Systems 

The method given above f o r  the  construction of an e l a s t i c  body which i s  
merge t i ca l ly  approximately equivalent, i s  closely r e l a t ed  i n  meaning t o  t h e  
consfruction of what i s  ca l led  an optimum system, which i s  known from t h e  
theory of automatic control+. 

I n  cer ta in  problems connncted with t h e  theory of noise, a l i n e a r  func- /181 
t i o n  i s  separated from t h e  random funct ion describing a dynamic process in
cludin,? white noise. This separation i s  based on the condition of t he  mini" 
of the correspondinq mean-square e r ror .  

This problem i s  analogous t o  the  above problem, which leads  t o  a separa
t ion  of the l i n e a r  functions of the  tensor components Qik from the components 
of t he  finite-deformation tensor. Here we have i n  mind not only an  externd.  
s imi la r i ty ,  but a more profound analogy of problems whose physical content i s  
d i f f e req t .  Indeed, t h e  process of va r i a t ion  of the  stressed-strained s t a t e  of 
an  e l a s t i c  body has under ac tua l  conditions a random character and belongs i n  
t he  f i e l d  of problems s tudied by probabi l i ty  methods (Bibl.2b). The separat ion 
of the  l i n e a r  pa r t  of t he  s t r e s s  and s t r a i n  tensor  components, based on the  
requirement of a minimum of the corresponding mean-square deviat ion of t he  po
t e n t i a l  enerqies II and Z+:may, i n  t h i s  connection, be  regarded as a p r a c t i c a l l y  
j u s t i f i e d  s implif icat ion of the  mathematical descr ipt ion of a complex phenom
enon, permittin2 a separat ion of the "pr incipal  par ts"  of t he  quant i t ies  under 
study. 

It i s  easy t o  es tab l i sh  a d i r e c t  correlat ion between the above-described 
method f o r  the construction of a system approximately equivalent as t o  t h e  
energetic c r i t e r ion ,  and the  methods of probabi l i ty .  This, however, would go 
beyond the scope of the  present invest igat ion.  

3 .  Determination of the Parameter a 

A s  already s ta ted,  the  parameter iz can be determined from various physical 
requirements imposed on the  components of the tensors  Dik and kk. 

'de s h a l l  start out from the  Huber-Uses p l a s t i c i t y  condition. According 
t o  this condition and t o  t h e  connection between the  i n t e n s i t i e s  of stresses 

-% Cf.  V.S. Pugachev, Theory of Random Fuiictions and i t s  Application t o  Prob
l e m s  of Automatic Control, Chapter 16. fizmatgiz, 1960 

179 



and those of the s t ra ins ,  l e t  t h e  region of e l a s t i c  deformations of t he  mater
i a l  be determined by t h e  condition imposed on t h e  i n t e n s i t y  of t he  deforma
t ions .  This condition, i n  the  Cartesian system of pectangular coordinates, 
has the  following form:* 

where A i s  a ce r t a in  physical constant*. 

To determine the  boundaries of the  region n*, l e t  us set a l l  the  coor- /182 
dinates  xlk,except one, as e q d  t o  zero and then l e t  us f i n d  the  values of 
t h e  nonzero coordinate on t h e  boundaries of t h e  e l a s t i c i t y  region from 
eq.(2.16). From the  r e su l t an t  values of IxikIn, l e t  us s e l e c t  t h e  grea tes t  and 
assume t h a t  a i s  equal t o  tihis quantity. Let 

X I 1  # 0; x,, = ...=x32 =0; 

Then, 

Let us put fu r the r  

Then, 
1

D,,.= -2 

From eq.(2.16), we f i n d  

-

D,,=-2 
1 

x ~ , ;  D,,= ...=D,,=0, 
(4 

* Cf.  A.P.Iltyushin, P l a s t i c i ty ,  Gostekhizdat, 1948; L.M.Kachanov, Foundations 
of t he  Theory of P l a s t i c i ty ,  Gostekhizdat, 1956. 

M-The introduction of t he  components of t he  finite-deformation tensor i n t o  
the  condition (2.16) i s  controversial, s ince th,e condition (2.16) belongs t o  
t h e  theory of small elasto-plast ic  deformations, which, i n  par t icu lar ,  i s  
noted i n  the  book by R.Hill llMathematical Theory of The trans
i t i o n  i n  the  conditions (2.16) t o  t h e  components of the  small-deformation 
tensor introduces no subs t an t i a l  changes i n  the  conclusions of this Subsection. 
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Comparing eqs. ( c )  and ( f )  we f ind  t h a t  CL i s  expressed by the equations 

For su f f i c i en t ly  small values of A we may approximately put 

O f  course, t h i s  method of determining the  region 0 5  i s  cot perfect .  Es
sen t i a l ly  we have confined ourselves t o  the  r e su l t s  of lrsoundingrrt h e  region fi 
only i n  t h e  d i rec t ion  of the axes of the  multi-dimensional coordinate sys
tem )Lik and, i n  addition, we have used highly simplified concepts as t o  the 
s t ructure  of the  region n. The method of "soundingr1 used here does not re
f l e c t  t3e influence of the components of the antisymmetric tensor R i k  on the  
nonlinear terms contained i n  the components of the finite-deformation ten
sor D i k .  We have l ikewise considered t h a t  the  pos i t ive  and negative signs f o r  
t he  coordinates xik were equally probable. T h i s  l e d  us, i n  par t icu lar  t o  the  
conclusion t h a t  A$5 > A and +*> p. 

These conclusions may be i l l u s t r a t e d  by an elementary one-dimensional 
sxample. From the  r e l a t ion  

i t  follows t h a t ,  f o r  0, E% > E, while f o r  c L 1  < 0, E+* < E, and t h a t  t h e  
absolute value of the difference E+>- E i s  the  same i n  these cases.l However, 
i n  apgroximation on the  symmetric i n t e r v a l  of the po ten t i a l  energy -zE( G +~ ~ 
+ $ )" by the  energy E* we get  the  r e s u l t  t h a t  not always E* E.2 


The one-dimensional case d i f f e r s  from the others precisely i n  tha t  a l l  
the  components of Pi, vanish here. This confirms t h e  conclusion t h a t  our de
ductions a r e  insuf f ic ien t ,  because of the  f a c t  t h a t  they a re  based on a simp
l i f i e d  concept of the  s t ructure  of the region n and on the  use of approxima
t i o n  over the  symmetric in te rva l .  

These shortcomings may prove substant ia l  for t he  case of she l l s ,  since 
considerable displacements and ro ta t ions  of t he  elements may take place there ,  
wiLhout t h e  appearance of p l a s t i c  zones. L e t  us, therefore,  consider a dif
fe ren t  choice of independent var iables  and replace the  region of approximate 
representation of t he  spec i f ic  po ten t i a l  energy of f i n i t e  deformations I7 by 
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t he  spec i f i c  po ten t i a l  energy of small deformations ii*. 

Section 3. 	 Second Method of Linear Appro-&”aion of the  Components of the 
S t r e s s  Tensor and of t he  Finite-Deformation Tensor 

L e t  us r e t u r n  t o  eq.(II, 9.1): 
1 

D i k = E l k f y g  r’ (&irekj + �irQkj +�kj9ir +&irQ&j)-

This equation shows t h a t  i t  i s  possible  t o  u t i l i z e  the  nine quant i t ies  c i k  
and filk d i r e c t l y  as coordinates of t he  region ;2. Tnere i s  no need, however, 
f o r  repeating a l l  t h e  calculat ions given i n  the  l as t  Section. 

Let us f irst  f i x  the  components S G k ,  considering them as ce r t a in  param
e te r s .  This i s  equivalent t o  a separation, i n  the  nine-dimensional space Si, 
of a six-dimensiord space of deformations w. 

To calculate  t h e  in t eg ra l s  on the  right-hand sides of eqs.(2.6), it i s  
suf f ic ien t  t o  consider the transformation of coordinates according t o  the  
formulas 

L e t  

where max IsikI;, i s  t h e  g rea t e s t  absolute magnitude, among t h e  s e t  of V a l - /184 
ues, taken by the  component c i k  on the boundary of the  region w. The quanti
t y  a i s  d e t e r d q e d  from the  conditio? (2.16). Hereafter, i n  calculat ing t h e  
in t eg ra l s  entering i n t o  t h e  expressions 1% and I.&+:-,we shall consider t he  ex
tended region &%- (Sect.2) determined by the  quant i ty  a. 

L e t  us now put 

The var iab les  lllk may vary over a r b i t r a r y  in t e rva l s  lying within the  
range (-1,+1). 

Bearing i n  mind the  conclusions of our study of approximation over a sym
metric range, drawn i n  the  las t  Section, l e t  us assume t h a t  all the  quanti
t i e s  T j l k  vary over an  in t e rva l  (cy, S )  where Icy1 and 131 are proper f rac t ions .  
The choice of the  t o t a l  range of va r i a t ion  f o r  a l l  t he  var iab les  711, i s  a sub
s t a n t i a l  s inp l i f i ca t ion  of the problem. I n  performing spec i f ic  calculat ions 
we s h a l l  most of ten assume tha t  cu = 0, $ = 1 o r  cy = -1, i3 = 0. Xowever, most 
of the  conclusions drawn below do not depend on the  values of cr and p .  L e t  us 
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re turn  t o  eqs.(2.7a) - (2.7d) and (2.8a) - (2.8d) i n  order t o  f ind  new expres
sions f o r  the coeff ic ients  bi, and bi of eqs.(2.6). Bearing i n  mind eqs.(3.3), 
we obtain instead of eq.(2.8a) 

Equations (2.7a) - (2.P) now take the  f o l h i n g  form: 

I n  calculating t h e  quantity b, l e t  us m.ke use of the variables xik. Ap
plying eqs.(3.1), (3.3) and making use of eqs.(2.7c) - (2.7d), we f ind 

From eqs.(2.7c) - (2.7d), {2.8a) - (2.8b), and (3.3) we obtain m 

where 




I 

Calculating t h e  summands i n  the  right-hand s i d e  of eq.(b), we find, on 
the  bas i s  of eqs.(3.1), a f t e r  several  transformations and a f t e r  proofs t h a t  
the  sums l i n e a r l y  containing i l i k  vanish*, t he  following 

3 3 3 3 3 3 

We have, fur ther ,  

* The t r i p l e  sums enter ing i n t o  eq.(3.7c) may be  calculated, f o r  example, on 
the  bas i s  of the following equation: 

3. 3 3 

Here, of  course, one must remember t h a t  t h e  quant i t ies  E i k  are symmetric i n  
the  ind ices  and tha t  t h e  Gik  are antisymmetric. 



From t h e  transformations leading t o  eq.(3.'7d) it is c lea r  t h a t  the  sum /186 
of terms with an  odd dimension r e l a t i v e  t o  t h e  components of t h e  tensor Gk 
must vanish. 

Let us introduce the  nota t ion  

Q -1 

3 3 3 3 3 3 , 3  \ 

Now, bearing i n  mind eqs.(3.3), we f ind 

3 3 3 3 3 

i -1  k - 1  i -1  k - 1  j - 1  

3 3 3 3 3 3 \ 2  

The right-hand s i d e  of eq.(3.9> can be represented i n  a somewhat d i f f e ren t  
form. Let us introduce the  notat ion 

3 

j - 1  

(3.10) 

3 3 3 3 
/187Then, 

'B2 =c2+a B i k q i k  f Ga2 Bikeik  -k 
1 - 1  k - 1  i -1  k-1  

3 3 . 3 3 



From eqs.(3.6a) - (3.6b), (3.7a), (3.9) - (3.11) result the following gen
eral representations of the quantities bi : 

A (clod4+c,,A2a+cl ,A2d +cI3a3+c14a4)+ 
2 

r 3 3 

In these equations, the coefficients Cik, dik, a i k ,  $ik, yik, b i k  do not 
depend on the parameter a nor  the components of the tensor C i k .  These coef
ficients are expressed by the folladng sextuple integrals over the region u, 
arithetized by the coordinates Gk : 
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!Jqder t i e  above assumptions as t o  the va r i a t ion  i n t e r v i l  1;: :,ik , we have 
P P 


1 . .  d U = J . .  . s . .  . d ~ , ,. . . dqZ3. ( 3 . W  
I a D. 

;>,le s t i l l  have t o  determine the  quantity a. Let us t u rn  again t o  the ccn
d i t i o n  of p las t ic iLy (2.16), replacing i n  i t ,  according t o  the theory of small 
elasto-plast ic  defornations, the  components of the  Z5nite-deforrnation tensor 
by the components of the  small-deformation ten-,or. 

The  boundary of the p l a s t i c i t y  region i s  a sur.fac:: of the second order i n  
the six-dimensional space of quant i t ies  E l k .  Let us f ind  the oinks of i n t e r 
sect ion of t h i s  surface with t h e  axes 8 i k  and l e t  us f iqd  l E i k  P)(. m7inen, ac
cording t o  eq.(3.2), we shall f ind  a. 

-Let us put f i r s t  � l l  # 0 ;  = ... - ca3 = e.  Then, from eq.(2.16), we 
obtain 

-PTittin? cI2 # 0 and = ... - c23 = 0 ,  we f ind  
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Comparing eqs .(c) and (d),  we conclude tha t  

where E i s  Youigls modulus, v i s  Poisson's constant, and i s  the  y ie ld  
points.  

The difference between t h e  value of a found here and t h a t  found i n  the  
preceding Section, as w a s  t o  be  expected, i s  ins igni f icant .  

If we r e t a i n  the components of the  small-deformation tensor  i n  the  condi
t i ons  (2.16), then t h e  quant i ty  a Will not be  connected with the  quanti
t ies '  dik. These values, however, a r e  s t i l l  r e s t r i c t e d  by c e r t a i n  conditions, 
-to b e mentioned below. 

Again, eqs.(2.6) permit us t o  f ind  A* and P*. We obtain 

where t h e  quant i t ies  Aik are functions of the  quant i t ies  a, cy, $ and of t he  
antisymmetric tensor components i i i k .  The form of these functions i s  deter
mined by the composition of the  coef f ic ien ts  b,, and b, .  

Since i n  As and +>% there  enter  t h e  parameters r h k ,  which depend on un
known components of t he  displacement vector,  the formulas (3.16a) - (3.16b) 
cannot be d i r ec t ly  used f o r  subs t i tu t ion  i n t o  eqs.(2.14) - ( 2 . 1 5 ~ ) .  To con
s t r u c t  t h e  f i rs t  approximation t o  the  so lu t ion  of t he  nonlinear problem of the  
theory of e l a s t i c i ty ,  t he  obtained expressions f o r  A* and p-2 must be  averaged 
over Q i k ,  and this w i l l  be discussed below. 

A comparison of the  coeff ic ients  b, , determined by eqs.(2.l0a) - (2.10b) 
and (3.l2a) - (3.12b), shows t h a t  the presence of f i n i t e  ro ta t ions  of the  ele
ments of the  body has a noticeable e f f ec t  on the  propert ies  of the approxima
t ions  being considered. O f  importance i s  l ikewise the  choice of the in t e r 
v a l  (a, 6 ) .  A t  c e r t a in  values of the  quant i t ies  s,, a, cy, 3, t he  right-hand 
s ides  of eqs.(2.6) may vanish, w h i l e  a t  other values of these quant i t ies ,  t h e  

3
X- See the  above-cited book by Il lyushkin,  pp.98-loO; we have A = - - ~ ;  e . - - =I 

whence follows eq. (3.15). 
J/2 ' - 3G' 
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functions Ai, may take negative values. For b, = 0 ,  obviously, the. conven
t iona l  l i nea r i za t ion  i s  permissible, consisting i n  a subs t i tu t ion  of the  tensor  
components Dik by t h e  tensor components & i k .  

For negative values of the  functions A , , ,  there  i s  a l o c a l  diminution of 
the  reduced e l a s t i c  constants h+ and F-% by comparison with h and p,  w.hich i s  
in te rpre ted  as a l o c a l  decrease i n  the  r i g i d i t y  of t he  material .  For posi
t i ve  A i r ,  the  r i z i d i t y  of the material undergoes an apparent increase.  Con
sequently, the nonl inear i ty  of t h e  components of the tensor  D i k  l eads  t o  m 
t he  development of a quasi-inhormgeneity of t he  mechanical propert ies  of t he  
material ,  wnich may be cal led kinematic. 

O f  course, the above statements can merely be  regarded as ce r t a in  heuris
t i c  conclusions which require  more de ta i led  ju s t i f i ca t ion .  For t h i s  reason, we 
s h a l l  present addi t iona l  explanations. 

1. 	 Preliminary Se lec t ion  of the Region of Approximate Representations of t h e  
Potent ia l  Energy I: Sy t h e  Energy IX 

The choice of t he  region w i s  of fundamental significance.  This i s  known 
from the theory of approximation functions but  i s  a l s o  c l ea r  from the preceding 
argument. If we dispose a r b i t r a r i l y  of the quant i t ies  a, P and ; L i k ,  we may 
evidently impart almost any desired values t o  the  functions A,, and reduce t h e  
solut ion of the  problem t o  a physical absurdity.  

Concrete problems of mechanics d isc lose  re la t ions  between the  quanti
t i e s  and 01,. For t h i s  reason, by prescribing t h e  in t e rva l  (a, 8 )  over 
which the quant i t ies  c i k  vary, we a l s o  impose cer ta in  r e s t r i c t i o n s  on the  re-
,?ion of var ia t ion  of t he  quant i t ies  z i k .  The diff iculLy i s  tha t  these re
s t r i c t i o n s  a re  not prescribed i n  advance i n  the  form of exp l i c i t  ana ly t ic  re
l a t ions .  I n  other words, there e x i s t s  a correlat ion o f  Lhe quant i t ies  � 1 ,  

and . - i l k ,  but  t h e  1imi';s of var ia t ion  of the  correlat ion fac tor ,  d i f f e r ing  from 
the  t r i v i a l  cases of zero and unity,  a r e  unknown.'?. 'de can only a s s e r t  tha t ,  
as the region of va r i a t ion  of �1, arld iiik i s  sxpanded, the  probabi l i ty  in
creases f o r  points  zorresponding t o  the  physical r e l a t ion  be'sween s i k  and nlk 
t o  f a l l  within t h i s  region. 

9 The reader may r a i s e  the  question whether i t  is legi t imate  t o  introduce 
the  concept of cor re la t ion  here. Indeed, i n  s o l v i n g  concrete boundary prob
l e m s  of the  e l a s t i c i t y  theory, a d i r e c t  connectivity i s  established between 
Lhe values of c i k  and nik, i .e . ,  i n  t h i s  case t h e  coeff ic ient  of cor re la t ion  
i s  ullity. But t he  very essence of t he  problem of approximation under consid
era t ion  here i s  prec ise ly  t h a t  t h i s  approximation does not r e l y  on the  solu
t,iorl of any p a r t i a l  problem. Imagine the  s e t  of possible  deformed states of 
a body described by t h e  tensors c i k  and ; 2 1 k .  To each s ta te  there  corresponds 
a point i n  the  six-dimensional region of the quant i ty  �1, and the  three-
dimensional region of the components of i - d i k .  I f  we do not know t h e  ana ly t i c  
connection between t h e  points  i n  these spaces, then the  cor re la t iona l  connect
i v i t y  comes i n t o  force.  The coef f ic ien t  of cor re la t ion  characterizes the  prob
a b i l i t y  of the  physical correspondence of point A of the  first space t o  
point  B of t he  second space. 



On the  basis of t he  above statements, we s h a l l  not cansider approximation 
over an  a r b i t r a r i l y  s m a l l  in te rva l .  Ne s h a l l  ins tead  consider a f i n i t e  region 
i n  the  six-dimensional space of the quaqtit ies ' I C k ,  bound5d by the  condition: 

For example, as s t a t e d  above, l e t  us put b = 1, tu = 0 o r  B = 0, CY = -1. /l9l 

The choice of a su f f i c i en t ly  wide in t e rva l  of var ia t ion  of the  compon
ents  of E i k  eliminates the  need f o r  es tabl ishing an exact connectivity be
tween cik and R i k .  

2. Preliminary Delimitation of the Region of Variat ion of t he  Quant i t ies  sL+lr 

A s  we know from the  theory of deformation of t h i n  rods, p la tes ,  and 
she l l s ,  f i n i t e  displacements and ro t a t ions  may simultaneously a r i s e  i n  t h e i r  
elements under s m a l l  deformations E i k .  A s  already mentiorled, there  i s  a cor
r e l a t i o n  between the  quant i t ies  e l k  and < > i k .  Since the  correlat ion coeff ic ient  
i s  unknowg, a region of var ia t ion  of the quant i t ies  x i k  i s  assigned a r b i t r a r i l y  
a t  f i rs t ;  f o r  e,yample, i t ,  i s  assumed tha t  these quan t i t i e s  vary from zero t o  - b  
where the quant i ty  b i s  a t  f irst  a r b i t r a r i l y  prescribed. Then we inves t iga te
A?? and k s  a t  various values of E l k  ly ing  on the  i n t e r v a l  (aa, Ba) and various 
values of : i l k ,  l y ing  on the  i n t e r v a l  (-b, +b). The value of the parameter b 
i s  r e s t r i c t ed  by the  requirement t ha t  A+:- and IL+* s h a l l  be pos i t ive  and by the  
requirement t h a t  t h e  Poisso? constants vf:- s h a l l  be  included i n  the in t e r 
v a l  (0; 0.5). 

O n  preliminary determination of the region of va r i a t ion  of the quanti
t i e s  Lik, we may use experimental data,  for example the  r e s u l t s  of a study on 
the deformation o f  s h e l l s  under grea t  displacements and angles of ro t a t ion  i n  
t h e  supercr i t ica l  stage.  

The study of the var ia t ion  of I>-::- and ++:-i n  t h e  fow-dimeqsional region 
(aa, Sa; C q k )  i s  i n  i t s e l f  a means of the qua l i t a t ive  analysis  of special  prob
l e m s .  

3. Determination of t ' ie Mean Values of AX- and p+* 

Establishing f i rs t  t h e  var ia t iona l  region Q, of the  components i ; i k ,  l e t  
us average the  quant i t ies  A+:-and p+:-i n  t h i s  region. Xe f ind  

. "  




This averaging may be  done with t h e  weignt p(2lk)  i f  i t  i s  possible  t o  
i;idica t s  a :unction p(i-hk) on t h e  b a s i s  of experiments or theore t ica l  con- /192
siderat ions.  Tllen, eqs.(3.18a) - (3.l8b) are replaced by the following: 

By a chaqgc, i n  scale ,  t he  in teq-a ls  1 '  ... driik can always be  rednced t o  
(Fb ) 

i n t eg ra l s  within limits ly ing  ins ide  the  i n t e r v a l  (-1,1). 

The quant i t ies  h?: and p+ are introduced i n t o  eqs.(2.1/+) - (Z.l5c), and 
t,hereb;T we complete t h ~so lu t ion  of the problem of l i n e a r  approximaticn, i n  
f i r s t  approximation. 

Section 3a. Further Developnent, ~~ of the Method of Linear Appro.xb"aion 

A s  noted i n  Sect. 3, the  determination of the region of var ia t ion  of t he  
t e n s w  components, over which the  approximate representat ion extends, i s  of 
fundameqtal importaqce i n  performi?: t h e  approximation of components of t h e  
filii-te-deformation t e r so r  by components of t'le small-deformation tensor. 

I n  Sect.3, we assumed t h a t  the bas ic  region w a s  a six-dimensional space 
idLh t h e  coordinates E i k ,  ad .  as an a7Lxiliar-y region t h e  three-dimensional 
space with the  coordinates i i i k .  Ne s h a l l  now supplem2nt the  above. 

If we know i n  advance, from t he  conditions of t h e  prablem, t h a t  ce r t a in  
components of the tensor  E i k  o r  ; i ik are zero, then t h e  number of dimensibns of 
the  bas ic  and auxiliary regions i s  correspondingly decreased. This c l ea r ly  
leads  t o  obvims changes i n  the  mul t ip l i c i ty  of the in t eg ra l s  entering i n t o  t h e  
formulas of Sect.3. 

We assumed t h a t  a l l  t h e  quant i t ies  c i k  vary over the  t o t a l  i n t e r v a l  
(cya, +b).  On the b a s i s  of t he  contents of Sect.2, we may consider a more gen
e r a l  case, individual iz ing t h e  var ia t iona l  i n t e r v a l  for each quant i ty  of E l k .  

L e t  us place the  components E ,  ? ,  G~~~ �33 ,  Cl2, �23, and cg l  i n  corre
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spondence with the numbers 1, 2, 3, 4, 5, 6. L e t  t he  components of G i k  vary 
over the  in t e rva l s  (aJail,, Bjaik) where t h e  symbols j correspond t o  pairs  of 
numbers i, k i n  the  above-discussed manner. Instead of eqs.(3.3) we in t ro- /193 
duce the  re la t ions  

The transformation of t he  bas ic  r e l a t ions  described i n  Sect.3 i s  obvious 
i n  t h i s  case, and we W i l l  not repeat  them here. We note t h a t  t he  introduct ion 
of individual  var ia t iona l  i n t eg ra l s  of the  components of e l k  i s  possible  only 
i n  those spec ia l  cases where t h e  condition of the  problem of mechanics permits 
such ipdividual izat ion.  I n  exact ly  the  same way, separate va r i a t iona l  i n t e r 
vals of t he  components of t he  a n t i s p e f u r i c  tensor  & k  may be  introduced. 

L e t  us continue our consideyation of t he  fu r the r  development of the pro
posed method. Assume tha t  we have solved tke quasi-l inear dynamic problem of 
the theory of e l a s t i c i t y  with the  constants A-X- and ps. This quasi-linear solu
t i o n  gives a f irst  approximation t o  t h e  so lu t ion  of the  nonlinear problem i n  
displacements. men, the tensor  components i ; k y  i n  first approximation, w i l l  
be known functions of the  coordinates x J ( j  = 1, 2, 3)  of an e l a s t i c  body and of 
the  t i m e  t .  Returnilng t o  eqs.(3.16a) - (3.16b), we f ind  A* and ,A+ as functions 
of XJ and t. Subst i tut ing t h e  resu l tan t  values of A"*. and 9-2 i n t o  eqs.(2.14) 
and determining t h e  tensor  components E i k  from the  f i rs t  approximation, we f ind  
the f i rs t  approximation for t h e  f i e l d  of s t r e s ses .  The f i rs t  approximation f o r  
the s t r e s ses  nil1 contain nonlinear terms depending on C i i k .  

On t h e  bas i s  of the f i r s t  approximation, the  t o t a l  var ia t iona l  i n t e rva l  of 
the  quant i t ies  t?ik can a l s o  be  refined. However, a considerable decrease i n  
?:?e diameter of the region LC% may lead t o  the  contradictions mentioned above. 

We r e c a l l  now t h a t  t h e  l i nea r i za t ion  of t he  components of D i k  s t i l l  does 
not, r e s u l t  i n  a complete l i nea r i za t ion  of t he  equations of elastodynamics, 
s ince other sources of nonlinear equations considered i n  Chapter I1 a re  of 
considerable significance here. I n  t h i s  connection, we must again invest igate  
the approximate method of l i nea r i za t ion  i n  a somewhat more complex form, and 
then go on t o  obtaining fu r the r  approfixnation. 

Section lr. Linearization i n  an Element of the  Shel l  

The r e s u l t s  of t he  preceding Sections permit an  approximate elimination 
of the nonlinear terms enter ing i n t o  t h e  equations expressing Hooke's l a w  on 
introduct ion of the  components of the finite-deformation tensor  i n t o  these 
equations. This, however, does not lead t o  l i n e a r  equations of motion of an  
element of the shel ly8since the  components of the s t r a i n  tensor  en ter  i n t o  the  
expression $%xldx'dx f o r  t he  volume of the defnvmed element. 

We a r e  now confronted by the  following a l t e rna t ive :  e i t h e r  t o  r e t a i n  the  
approximate l i n e a r  expressions (2.14) obtained above f o r  the  stress tensor /I94
components connected with t h e  spec i f ic  energy of deformation and not t o  car ry  
the  l i nea r i za t ion  t o  completion, o r  e l se  t o  consider the quasi-specific energy 

192 



of deformation determined by the  equat ion  

and, by introducing var ia t ions  i n t o  the  r e s u l t s  above, obtain a complete l i n 
ear izat ion,  and i n  t h i s  case t o  enter  i n t o  formal contradiction with t h e  w e l l -
known energetic pr inc ip les  of Hooke’s l a w .  

It seems permissible t o  make use of iqs.(4.1), s ince every approx5mate 
so lu t ion  of a p’hysical problem contains e r rors  contradicting t h e  exact solu
t ions.  

Consider the i n t e g r a l  

Making use of (11, 6.3) and re ta inigg i n  the i n t e g r a l  expression a l l  terms 
of the order of ( ~ ~ k ) ~ ,we obtain 

From eqs.(2.3b), i t  follows t h a t  

Let us represent I i n  expanded form: 



On comparing eos.(4.Lc) and (2.5) we conclude t h a t  only the  ri$ht-hand /195
sides  of eqs.(2.6) a r e  c:?anged. The new right-hand s ides  of eqs.(2.6) now have 

It i s  clear  from eqs.(4.i+) t h a t  the ci a r e  expressed as follows: 

where 

.isabov?, w? now pass t9 a loca l  system of rectangldar Cartesian coordi
nates, takin;? 

I [ g..- 1.9 g j k = o  (i # k ) .  
(b1 



-- 

To transform the expression ci, we must make use of tine r e l a t ions  employed 
i n  transforming the  expressions f o r  4, and cjz i n  the l a s t  Section, and of the  
formula 

. 3  I - 3 3 

We f ind  

where 

dw= d q l l  ... d q 2 3 .  

After transformations, Y ,  and Y2 take tne following form: /196 

By analogy t o  eqs.(3.12a) - (3.12b), we obtain 

c, = 
2 

as i.(e,,tzeA2+ el3a3+el,u4)+2p ( / l , a z ~ z +  
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The coef f ic ien ts  enter ing i n t o  these fornulas are expressed by the  follow
ing  sextuple integrals  : 
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A s  i n  Ssct.3, we may subs t i t u t e  i n  r e l a t ions  (4.9a) - (4.9b) and i n  the  
r e su l t an t  expressions (4.12a) - (4.12d): 

J B P 

. .. d w = s . .  . . . . d q , , .  .. dqg,. 
a 

I n  some cases, as noted i n  Sect.3a, the  i n t e r v a l s  of va r i a t ion  of the  
var iab les  Tiik must be individualized. Then, 

/I98 


8, P. 

.. . dw = r ... ... dyI1...dqZ5. 
( w )s .I 

J 

4 

An example of approximation over various va r i a t iona l  i n t e r v a l s  of vi, i s  given 
i n  Sect.6. 

Instead of eqs.(3.l6a) - (3.16b), we ob ta in  

197 



111111 11111111 I1 1111111 .1  I I. II ..., ._.._ _  ~~-

The propert ies  of the  coef f ic ien ts  cik a r e  analogous t o  those of the co
e f f i c i en t s  A,, i n  eqs.(3,16a) - (3.16b) considered i n  Sect.3. 

'vie give bel2w an e x a p l e  i l l u s t r a t i n g  t h e  contents of Sect.4. 

~~~~Section 5 .  	 On the Relation between Linear Approximation of t-he Components of 
t h e  Finite-Deformation Tensor and t h e  Method of Equivalent Linear
i za t ion  and the  Probabili ty MethodsI Further Stgges of Successive 
Approximations 

The above method of l i nea r i za t ion  f o r  the  s t r z s s  tensor components and the  
fidbe-deforrration tensor components a r e  close t o  the  methods of equivalent 
l inear iza t ion ,  which we know from the nod inea r  mechanics of systems with a 
f i n i t e  number of dsgrees of freedon+?. 

The method applied above i s  a l so  closely r e l a t ed  t o  the  probabi l i ty  method 
of solving t h e  problems of mechanics. I n  f ac t ,  the  region Iri, consisting of t he  
regions I): and G, i n  which the  approximation i s  performed, i s  the region of 
llprobable statesll of an  e l a s t i c  body. The method of approximation adopted by 
us i s  equivalent t o  the  hypothesis tha t  these states a re  equprobable,  which. 
only approximately carresponds t o  r ea l i t y .  

I n  invest igat ing .lamow classes  of problems of the  mechanics of she l l s ,  
one must bear i n  mind the r e s u l t s  of experiments permitt ing us t o  construct 
functions characterizing t h e  probabi l i ty  d i s t r i b u t i o n  of the  .appearance of cer
t a i n  values of the quant i t ies  forming the  regions w and ;'*. By using prob- /199
a b i l i t y  d i s t r ibu t ion  curves, we must introduce fuqctions of weight i n t o  the  in
t eg ra l s  I of the preceding Sections, i.e., we must consider t b e  weighted-square 
d.eviations. The quaqtities ai, entering i n t o  eqs.(3a.l)  a r e  s p e c i d  f w m s  of 
the  weighting functions. 

We do not dispose of the necessary experimental data  and were therefore  
compelled to abs ta in  from the  use of weighted-square deviations. 

I n  the  development of Section 3 - 4 we give a surmnary of the f i rs t  stages 

-% Various versions of t he  method of equivalent l i nea r i za t ion  can be  found by 
the readar i n  t!ie following books: N.N.Bogolyubov, Yu. A.  Kitropollskiy,  
Asymptotic Methods i n  the  Theory of Nonlinear Vibrations, Fizmatgiz, 1958; 
S.Krendel1, Random Vibrations of Systems with Nonlinear Tiestoring Forces, 
Transactions of the  Symposium on Nonlinear Vibrations, Kiev, 1961; Ya.G.Pan
ovko, Action.of Periodic Impacts on a Nonlinear E la s t i c  System with One Degree 
of Freedom, Trudy In-ta F'iziki AN Latv. SSR, No.5, 1953 



of the  construction of approximate solut ions f o r  t he  nonlinear boundary prob
l e m s  of the  theory of she l l s ,  based on the  use of  the  l i n e a r  approximation 
mekiod of the  zomponents of the finite-deformation tensor.  

L e t  us consider only those problems i n  which the  nonl inear i ty  i s  connected 
with the  efisbence of f i n i t e  displacements and angles of rotat ion.  The com
ponents of ';ne s t ra in  tensor E i k  will b e  regarded as quan t i t i e s  small i n  com
parison with unity.  

Turning t o  t h e  general equation of dynamics (111,15.1), we note t h a t  the  
l i n e a r  approximation, with an  introduct ion of averaged e l a s t i c  constants x%
and E-: considered i n  the  preceding Sections, makes i t  possible  t o  l i n e a r i z e  the  
operators entering i n t o  the elementary work of the  i n t e r n a l  forces 6A. The 
terms expressing t h e  work of the  body and surface forces  and of the i n e r t i a l  
forces  W i l l ,  as beyore, s t i l l  contain nonlinear summands. But these nonlinear 
terms will not contain components of Qk but  w i l l  depend instead on the  
sca la r  a ' k s i k i f  we disregard a l l  the second-order terms i n  Lhe composition 
of D i k ,  which a f t e r  mult ipl icat ion by t h e  i n e r t i a l  f w c e s  W i l l  y ie ld  terms w i t h  
a homoqeneity iqdex equal t o  three  with respect t o  the displacement components 

. 	 and t ' l e i r  der ivat ives .  I f ,  i n  agreement with most inves t iga tors ,  we neglect 
Che influence of t'le volumetric expansion g i k E i I (  on the  v i r tua l  work of t h e  
i n e r t i a l  forces, the body forces  and the  surface forces ,  then the approxh"aion 
r iven i n  Sects.3-li will permit a l i nea r i za t ion  of Lhe system of equations of 
motion-::. The r e su l t an t  system, i n  accordance with Sects.3-3aY Will be denoted 
as a system of equations of P i r s t  approximation. We note tha t  this system of 
equations will d i f f e r  from the  systems of l i n e a r  equations of Chapter 111, ob
tained by d i r e c t  r e j ec t ion  of a l l  nonlinear terms. The difference w i l l  depend 
on ?'?e term p * e r  E entering i n t o  the  composition of D i k  according t o  
eq. (2.15b ). 

We W i l l  noc fu r the r  discuss  the construction of t h i s  system, s ince i t s  
method of der ivat ion does r l o t  d i f f e r  i n  pr inc ip le  from t h a t  discussed i n  
Chapter 111. 

4fter  deciding t o  l i nea r i ze  t h e  boundary problem i n  displacements, we w i l l  
obtain t%e f i e l d  of s t resses ,  makin,? use of eqs.(2.14) and (4.13a) - (4.13b), /200 
t,o,?ether with eqs. (2.6) and t h e i r  coeff ic ients ,  found i n  Sect .3-Ic. 

A s  already noted i n  Sect.3aY the  resu l tan t  expressions f o r  the s t r e s s  ten
sor components Will contain nonlinear terms depending on the  components of the  
antisymmetric t e n s w  C i i k .  Supplementing our remarks i n  Sect.3aY i t  will be  re
ca l led  tha t  t h e  expressions for A+ and pL0 i n  Sects.2 - 4 were obtained i n  a 
l o c a l  Cartesian coordinate system. For t h i s  reason, in considering t h e  f i e l d  
of stresses, we m u s t  transfarm t h e  components of i-21, i n t o  t h e  l o c a l  Cartesian 
system of coordinates, and o n l y  then determine the  quan t i t i e s  of A* and IL* 

-:The terms of t he  ord2r 9f 6 i k  and of higher orders i n  the  expression f o r  t he  
v i r tua l  work of t h e  forces  of i n e r t i a  and the  l i v i n g  forces  are neglected i n  
t h e  equations of t h e  monograph (Bibl.12). Returning t o  the  questions consid
ered here, we note t h a t  the appro.uimation given i n  Sect.3 can be applied i n  
t h i s  case. 

I 




A s  a result, we obtain the  first approximation f o r  t he  s t r e s s  tensor  con
ponents. To obtain the second approximation, l e t  us substitute i n t o  eqs.(2.14) 
t h e  values of A?:-and p$t found from the  f i rs t  approximation. We r e c a l l  t h a t  
these values f o r  A% and @+ti n  t h e  problems of s h e l l  mechanics are functions of 
the coordinates xi of the  poin ts  of i t s  bas ic  surface and a l s o  of t h e  a coor
dinates.  .&en subs t i tu t ing , in  the  var ia t iona l  equation, all nonlinear terms 
which had been neglected i n  obtaining t h e  first approximation, by quant i t ies  
found from the solut ions of the  equations of f irst  approximation, we obtain the  
system of l i n e a r  equations of second approximation. Such a system of l i n e a r  
equations W i l l  have var iab le  coeff ic ients .  This complicates t h e  solut ion of 
t h e  problems, but,  evidently permits a quali tative analysis  of the solut ions 
of tne  nonlinear prgblem, t h a t  i s  more profound than a n  analysis based on the  
equations of second approximation obtained by the  ordinary methods of the elas
t,ici",y theory. An example of these methods i s  the  use of the nonlinear Lame' 
equatiors (11, 7.5a) - (11, 7.5b), where addi t iona l  body forces  g1 a r e  deter
mined from the  f i r s t ,  approximation. We have already noted the  disadvantages of 
such methods (11, Sect.8). 

To f a c i l i t a t e  the introduct ion of the methods considered i n  Sects.3-4, we 
present an i l l u s t r a t i v e  example i n  Lhe following Section". This example 1All 
a l s o  permit us t o  supplement the  general character izat ion of the  sig2ificance 
of the  method. 

Section 6 .  	 On kisymnet r ic  Deformations and the  Z la s t i c  S t a b i l i t y  of a Cir: 
cular  Tube Subejected t o  the Action D f  Longitudinal Compressive 
Forces 

The heading of this Section coincides with the  t i t l e  of another work 
(Bib1.23d). Yere we make use of cer ta in  results of tha t  paper, with the ob
j e c t  of t h e i r  fur ther  development, on the b a s i s  of the  method given i n  Sects.3-4. 
At the same t i m e ,  the  method of approximation under consideration i s  given /201 
an elementary i l l u s t r a t i o n ,  showing i t s  promise. 

We consider the  well-known problem of t h e  s t a b i l i t y  of a c i rcu lar  cylin
d r i c a l  tube, compressed by longi tudinal  forces  uniformly d is t r ibu ted  along t h e  
contour of the  bas ic  (middle) surface i n  the  face  sections of t he  cylinder. 

We s h a l l  study only the  case of axisymmetric deformations, although t h e  
experimenkal and theore t ica l  results obtained i n  the  last  15 years convincingly 
prove the  significance not of purely &symmetric deformations, bu t  of deforma
t ions  with a cycl ic  symmetry about t he  a x i s  (Bibl.4, 10). The assumption of 
the possible  existence, i n  t h i s  case, of axisymmetric forms of deformation i n  
the t r a n s c r i t i c a l  s tage i s  l ikewise confirmed by experiments described i n  older  
reports.  Evidently, i n  t h i s  work r e l a t ive ly  th ick  she l l s  were investigated,  
and the  symmetric forms of deformation w e r e  accompanied by s t r e s ses  exceeding 
the  y i e ld  point of the  material-:+. Thus, we s h a l l  confine ourselves t o  a con-

%- This example camot  be the object  of the  s tud ie s  i n  Sects.3-4, s ince the 
extreme s impl ic i ty  of t he  problem admits many more solut ions than t h a t  given 
below. 
.:-XCf. I.V.Gekkeler, S t a t i c s  of an Elas t ic  Body, ONTI ,  1934, pp.271-276; 
S.P.Thoshenko, S t a b i l i t y  of Xlast ic  Systems, OGIZ,  1946, pp.388-392 
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s idera t ion  of t h e  adsymmetric deformations of a closed c i rcu lar  cy l indr ica l  
she l l .  Following t h e  notation adopted earlier (Bibl,23d), we put 

where the ,coord ina te  x i s  the  d is tance  from one of the face  contours of t h e  un
deformed middle surface measured along t h e  generatrix, and s i s  the  length  of 
a r c  of the  d i r e c t r i x  measured from some in i t i a l  point, while the  z coordinate 
i s  measured along a normal t o  the  undeformed middle surface i n  the  d i r ec t ion  
toward t h e  axis of t h e  tube. I n  longal coordinates (6.1) on the undeformed 
middle surface, we have 

Making use of, the  method of successive approximations given i n  (111, 
Sects.9-10), we confine ourselves here t o  the f i rs t  approximation. According
l y ,  we put 

where u, v, w a r e  t h e  displacement vector components of a point  of the  middle 
surface of the  she l l .  

As we know from Chapter 111, t h e  expression ( 6 . 3 )  corresponds i n  accuracy 
t o  the  reduction formulas r e su l t i ng  from the  Kirchhoff-Love hypotheses. An in
crease i n  the  accuracy of reduction i s  not necessary s ince t h i s  example on ly  
has an i l l u s t r a t i v e  purpose. 

I n  &symmetric deformations, the  displacement vector wmponents of a /202 
point  of the middle surface a r e  expressed as follows: 

u =u ( x ) ;  u =0; w =rer(x).  (a> 

Using (III,9.1)y (111, 9.2), we f ind  

where k = R-' i s  t h e  curvature of a sec t ion  of t h e  middle surface normal t o  i t s  
generatrix. At the  accuracy f o r  constructing t h e  equations adopted by usy 
these same r e l a t i o n s  are equivalent t o  the  conditions 
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e31 =e23 =0; =~ ( 1 ) .  

weIJsiqg (111,10.la) - (111, 1 0 . 3 ~ ) ~  f i n d  

6.6) 


If we remain within the limits of the  accuracy adopted by us, then we may 
approximately put  

Thus, of the  s ix  s t r a i n  tensor  components, t h ree  vanisn i r i  t h i s  case, and 
t!le component �53, neglectin? t h e  summands of order  z i n  i t s  composition,is 
expressed i n  terms of c 1  and 6 2 2 .  

Consequently, t he  l i n e a r  approximation of t he  components of t he  f i n i t e -
deformation tensor,  i n  the problen under consideration, must be  performed i n  
t n e  two-dimensional space of the  quant i t ies  e;1 and O f  course, the  re
s t r i c t i o n  i n  the  ;?umber of space dimensioiis of possible  deformations w a s  ob
tained here as a r e s u l t  of very gross s implif icat ions.  We have given above the 
motivation f o r  t h i s  appToach t o  the  problem. 

On the bas i s  of eqs.(6.3), we f ind  

(6.8a) 

o:n, bearing i n  mind. eqs.(6.4), 

(6.8b) 

Hereafter we s h a l l  cms ide r  on ly  the  mean value of ~5~ over the  thick
283s of .:he she l l ,  expressed 5;- t h e  fornula 

From eq.(3.%), we f i nd  /203 
-

At 2 (v"31 )2. 

(6.10) 
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Equations (318a) - (3.8b) y i e ld  

1 - 1 -
B,, =-4 (9,1)2; B,, =-- (Q3J2. (6.11a)4 

The other functions Bik vanish. Further, 

1 c*=- fQ3J4.  (6.11b)
32 

Using eqs.(3.12a) - (3.Ub), (4.lla) - (&.llb), and (6.10) - (6.11b), w2 
f i n d  

The quant i t ies  A %  and p% determine the  required l i n e a r  approximation i n  
t h e  spec ia l  case under consideration. 

I n  ca1cdat ing  t h e  coef f ic ien ts  qk and nik,  eqs.(3.13a) - (3.13d) 
and (4.12a) - (4.12d) must be  used, bearing i n  mind eqs.(6.5) - (6.7) and pass
i n g  i n t o  the two-dimensional region of in tegra t ion  according t o  the  indicatLons 
cciven i n  Sect.3a. 

The radial displacements w of t he  middle surface e s t ab l i sh  a f i e l d  of 
flexural s t resses .  Therefore, the  s h e l l  i s  divided i n t o  two zones over i t s  
thickness,  a zone i n  which t h e  t e n s i l e  s t r e s ses  dominate and a zone i n  which 
the  compressive s t r e s ses  o11 dominate. I n  the  zone of t e n s i l e  s t resses ,  t h e  
var iab le  Tll  i n  t he  i n t e g r a l s  (3.13a) - (3.13d) and (4.12a) '- (4.12d) varies 
over t he  in t e rva l  (0,l). I n  the  zone of compressive s t r e s ses ,  t h i s  var iable  
var ies  over the  i n t e r v a l  (-1,O). W e  assume t h a t  the  va r i ab le  Tb2, correspond
i n g  t o  t h e  component e Z 2  of the  s t r a i n  tensor, varies over the  symmetric i n t e r 
val (-1,l). 

The numerical. values of the coef f ic ien ts  q k  and nik here depend on A 
and p, T h i s  r e l a t i o n  i s  due t o  the  f a c t  t h a t  633 i s  expressed i n  terms of cI3 
and ea2 by eq. (6.7). Consequently, 



The r a t i o  A :  ( A  + a)i s  independent of Young(s modulus E, but  depends 
only on Poissoncs constant v. Table 1shows the  physical constants and para
meters a f o r  s t e e l ,  aluminum, and duralumin. We have assumed t h a t  the  con
s t a n t s  v f o r  these mater ia ls  a r e  the same, and therefore  the  coef f ic ien ts  qk 
and ni, f o r  these materials, shown i n  Table 2, a r e  a lso the  same. /x)4 

TABLE 1 


1 STEEL 30KhGSA . . 12700 0,805.10-2 1,54
2 ALUhlINUh! AMG . . 2060 0.396.IO-' 6.38 
3 DURALUMIN D17  . 2350 0,439 IO-' 5,19 

TABLE 2 

I n  the  columns w i t h  a (i)sign, the numerical values of the coef f ic ien ts  
a r e  given f o r  the region of tension. I n  t h e  region of compression these co
e f f i c i e n t s  have the opposite sign. 

It will be seen from eqs.(6.12a) - (6.1%) t h a t  the  quant i t ies  A* and p* 
i n  the  zone of t e n s i l e  s t r e s s e s  a r e  always greater ,  respectively,  than A and p.  
I n  the  zone of compressive stresses t h i s  increase of A* and p* over A and 1-1 may 
a l s o  occur, but  t he  differences A* - A and W - I.L a r e  smaller than i n  the  f irst  
;one, s ince the quan t i t i e s  i n  odd powers of the  parameter a a r e  negative. 

If the parameter a and the  components of a r e  such t h a t  t h e  tr inomials 

i n  the zone of compression a r e  negative, then i n  this zone the  differences A*-A 
and p* - I.L may a l s o  be negative. 



I n  any cass, r e l a t i o n s  (6.12a) - (6.12b) show t h a t  t h e  presence of non
l i n e a r  terms among t h e  s t r a i n  tensor  components D,, strengthens the  asymmetry 
i n  t h e  d i s t r ibu t ion  of s t r e s s e s  over t h e  thickness of t he  she l l ,  i n  connection 
with the  appearance of r a d i a l  displacements w. I n  the zone of tension, t he  
s t r e s s e s  increase more rap id ly  than would follow from the  l i n e a r  theory, while 
i n  t h e  zone of compression they increase more slowly. 

I n  t h i s  connection, t h e  stresses i n  the  t e n s i l e  zone reach t h e  y i e ld  
point  e a r l i e r  than i n  t h e  compressive zone, t h e  mater ia l  of t he  s h e l l  i n  t he  
t e n s i l e  zone lo ses  i t s  load-carrying capacity, and t h e  ac t ive  load i s  trans
mit',ed t o  t he  mater ia l  i n  t h e  i n i t i a l  zone of compression. O f  course, i n  t h i s  
case there  i s  a r e d i s t r i b u t i o n  of s t r e s ses ,  and the  very concept of in i t ia l  
zone of compression l o s e s  i t s  meaning. /205 

To obtain a quan t i t a t ive  evaluation of the  e f f e c t  of nonlinearity on the  
deformation process, l e t  us use one of t he  solut ions of t he  problem i n  i t s  
l i n e a r  postulation, given e a r l i e r  (Bibl. 23d). 

Coxsider t he  case of the equilibrium of a tube f r e e l y  r e s t ing  on the  face  
contours of tne  middle surface*. The function w(x) i n  t h i s  case i s  defined i n  
t h e  following manier +SF: 

Here, R and G are ,  respect ively,  the radius  and length of th,e tube, and 
D and 3 a r e  expressed by the  formulas 

where E i s  Young's modulus, v Poisson*s constant, and E and v a r e  connected 
, 	 w i t h  the Lame/ constants by the  r e l a t i o n s  (11, 4.2a) - (11, 4.2b). The force  

compressin,; t h e  tube i s  denoted by T. Ne s h a l l  now make a statement of sub
s t a n t i a l  importance f o r  what follows. 

The parameter 4 i n  eq.(6.13) may a l s o  be understood as a quantity con
nec5ed with t h e  length of t h e  tube by the  r e l a t i o n  

I,, =kl ,  

where k i s  a whole number. I n  this case, the  function w(x) determined by 
eq. (6.13) will s a t i s f y  the  boundary conditions and the  fundamental d i f f e r e n t i a l  

.#. Freely r e s t i n g  i s  considered by us  as equivalent t o  hingedly res t ing .  

C f .  [Bib1.23d, eq. (2.3)l. 

205 




-- 

equation of the problem, since tha t  equation does not contain t h e  parameter 4 
(Bib1.23d). Tnus, we have the  r igh t  t o  a t t r i b u t e  t o  the  parameter 4, a d e f i n i t e  
meaning predetermining the  solution (6.13). We shall give t h i s  p r e d e t e d n a 
tion b elow. 

Tne c r i t i c a l  value of T [ the upper c r i t i c a l  value according t o  conven
t i o n a l  terminology (Bibl.!+, lo)] satisfies the  equation 

It can be established t h a t  the  minimum c r i t i c a l  value T corresponds t o  
t h e  following approadmate re la t ion :  

(6.16) 

Under condition (6.16), we f ind  from eq.(6.15) t h e  well-known formula /206 

T == 
4 E  h2 

'' v3(l-vz) 
-
R 

. (6.17) 

Using eq.(6.15) and r e l a t i o n  (6.16), we f ind  the following approximate express
i o n  f o r  w(x): 

(6.18) 


The term retained here determines w(x) for a half-wave corresponding t o  
the  pr incipal  form of l o s s  of s t a b i l i t y .  Therefore, & i s  here not t h e  t o t a l  
length of the tube but the  length of a half-wave. This length i s  indetermin
a t e .  For i t s  determination we must use experimental data.  

Making use of eq.(6.9), we f ind from eq.(6.18): 

D 

Putting v = 0.3, we obtain 

- I1 1 1,28 
!.?31 zz -0,727 cos -

I 	 rr,, 1 (Rh): 
T 
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We now a l s o  give expressions f o r  I,.x, (4, and (a,)tax: 

ImaX=0.727 -I1 1 . (6.X)a)I F31 
5 r - 1 '
T 


-
Equation (6.20a) determines the  limits of var ia t ion  of ,. To deter

mine k andL+, according t o  eqs.(3.18a) - (3.18b), we have 

b b 
- 1 - 1 

(!!31)2 d!!31=-(!l3,)iaX;
201-s- 3 

--b -b 

(6.2%) 

(6.22b) 




These equations permit only a ra ther  rough evaluation of the  e f f ec t s  con
nected with t h e  presence of nonlinear terms among t h e  components of t h e  f i n i t e -
deformation tensor Dik  . 

Consider now the  pr inc ipa l  conclusion resu l t ing  from the  above. 

1. 	 Ebaluation of the  Effect of t he  Component Sar on the  Stressed S ta t e  of 
a Shel l  Depending on the  Value of the  Ratios Tcr : T and h: G 

It i s  c lear  from eqs.(6.20b), (6.21), and (6.22a) - (6.22%) t h a t  the ef
f e c t  of the nonlinear terms on t h e  coef f ic ien ts  A* and p* substant ia l ly  depends 
on the  r a t i o s  T,, : T and h: 4. Let us introduce the  notation 

(6.23a) 

Then, 

As can be concluded from eqs.(6.22a) - (6.22b), the e f fec t  of the nonlin
ear terms among t h e  components of Dik decreases with decreasing r a t i o  h: 4 and 
increases as T approaches T c r .  

To disclose more d i s t i n c t l y  t h e  significance of the nonlinear terms, we 
present below ce r t a in  numerical calculations of t he  value of the quant i t ies  
entering i n t o  eqs.(6.2%) - (6.22b), based on the  solut ion (6.18). O f  /x)8 
course, t he  r e s u l t s  so  obtained can be regarded merely as rough and indicat ive.  

Taking as before, v = 0.3 and, consequently, p, l e t  us consider the 
separate terms i n  eqs.(6.22a) - (6.22b). Let us earing i n  mind 
eqs.(6.23a) - (6.23b) 

Then, eqs.(6.22a) - (6.22d) can be represented as follows: 
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0.05 

-- 

I n  the  r e l a t i o n  (6.22a) - (6.22b) we neglected term2 of r e l a t i v e  order 
re ta in ing  terms of orders a-f(&l)Eax, and a-2(&l)tax and took i n t o  

consideration the  values of t he  coef f ic ien ts  q k  and q k  given i n  Table 2. A 
posi t ive s ign before terms within parentheses corresponds, as above, t o  a re
gion of tension. 

It i s  c l ea r  from eqs.(6.25a) - (6.25b) and from Table 2 tha t  t he  normal 
s t resses  i n  t h e  zone of tension a r e  greater  than those determined by the  l i n e a r  
theory, while i n  the  zone of compression they a r e  correspondingly l e s s .  It i s  
c lear  t h a t  the  shearing s t r e s ses  i n  the  zone of dominating t e n s i l e  s t resses ,  i n  
areas incl ined a t  an angle of z t o  the  generatrix,  will be greater  than those 

determined by t h e  l i nea r  theory. To evaluate the  degree of deviation of the  
nonlinear theory f rom the  l i n e a r ,  l e t  us turn t o  Tables 3 and 4.  These Tables 
give the values of xi and yl and t h e i r  corresponding values of w. 

It will be seen f rom Tables 3 and 4 and eqs.(6.25a) - (6.2%) tha t ,  even 
a t  small values of u), the  reduced e l a s t i c  constants %*and G+-’- can deviate  con
siderably f rom A and CL,but  this, according t o  eqs.(2.14),involves a deviation 
of the  f i e l d  of s t r e s ses  from tha t  found by the  l i n e a r  theory. /209 

;“le c a l l  a t ten t ion ,  f o r  instance,  t o  the  f igures  marked by an a s t e r i sk  (*) 
i n  Tables 3 and 4 .  Table 3 i nd ica t e s  that, f o r  s t ee l ,  a tu ,  3 0.09, i n  the zone 
Df dominant t e n s i l e  s t r e s s e s x t  i s  more than 3% greater  than A ,  whereas i n  the 
zone of dominant compressive s t r e s s e s  it is  more than 35% smaller. For dura
lumin, these changes i n x *  already occur a t  w = 0.07. 

TABLE 3 

STEEL JOKHGSA I WRALUMIN DL7 
I-

0,05 0,0900+ ...- 0.0265 0,05 0,0664* 0.05 0.0195 
0,lO 0,107 0.10 0,0374 0.10 0,0790 0.10 0.0276 
0,20 0,127 0,20 0,0530 0.20 0.0939 0.20 0.0391 
0.30 0.141 0.30 0.0648 0.30 0,0478

0;40 0;0749 0;40 0,0552w O@Ku+I 0.50 U,0618+ 
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TABLE 4 

STEEL 30KHGSA 

I - I . Y, 0 Ql 

__.__ 

0.05 0,0914 0.05 O.i42* 0.05 I 0.0674 0.05 0,105' 
0.10 0.109 0.10 0;201 0,lO 0,0802 0,i0 0.148 
0,20 0,1292 0,20 0.284 0,20 0,0953 0.20 0,209 
430 0,143* 0.30 0,348 0,30 0,106* 430 0.256 
0,40 0,154 0.40 0,402 0.40 0.1 13 0.40 0;2!36 
0.30 . 0,162 0.30 0,449 0.50 0,120 0.50 t?#331 

The reduced e l a s t i c  constant l ikewise d i f f e r s  appreciably from p a t  
r e l a t ive ly  small values of w. Thus, fo r  example, it Will be c lear  from 
Table 4 t h a t  t he  value 10 f o r  s t ee l ,  a t  w E 0.14, i s  about 35% grea ter  than p, 
i n  the  zone of dominant t e n s i l e  s t resses ,  and 25% i n  the zone of compressive 
s t resses .  For duralumin, these charges of z9 occur already a t  w = 0.11. 

We sha l l  now determine whether the values of w given above a r e  possible., 
I n  the  case under consideration, t h e i r  existence i s  ensured by the 

factor  (%- 1)-' on t h e  right-hand s ide of eq.(6.23a). Table 5 gives the 

hvalues of w, the  ratios i and t h e  corresponding values of the r a t i o  T : T c r ..e 

TABLE 5 

0.02 I 0,750 
0,06 0.04 0.600 

0,06 0.500 
0.02 0.800 

0,08 	 0.04 
0.06 
0.02 

0.10 0.04 
0.06 


Oi857 
0,12 0,750 

0,667 

Since t h e  value of t h e  ratio h :4 i s  unknown, l e t  us turn t o  the  ex- /a0 
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perimental data  given i n  the  Vol fmirmonograph (Bibl.4). 

We re l i ed  on the solut ion of the axisymmetric problem. However, as shown 
by experiments, t he  shapes i n  which th in  s h e l l s  buckle a re  not adsymmetric.
Two or  three systems of depressions a re  formed, which can s t i l l  be considered 
as a ce r t a in  equivalent of t he  systems of half-waves of the &symmetric form 
of deformation. 

Using Figs.8.2 and 8.3 of theVolfmirmonograph (Bibl.k), we can evaluate 
t h e  r a t i o  4, : R i f  we assume, a s  indicated above, t ha t  t he  parameter 4 i s  the 
length of a half-wave. T h i s  evaluation shows tha t  the r a t i o  4 : R f o r  speci
mens shown i n  Figs.8.2 and 8.3 (Bibl.4) can have values of 0.15 - 0.2. 

Now, from eq.(6.16), f o r  n = 0, i .e. ,  f o r  one half-wave, we f ind 

(6.26a) 

For v = 0.3, we obtain 

h I 
z= 0,168 -

R 
. (6.26b)I 

Hence, we f ind  tha t  t o  the var ia t ion  of the r a t i o  4, : R over th5 in t e r -
>dl (0.15; 0.20) there  corresponds a var ia t ion  of the  r a t i o  h : G over the  in
t e rva l  (0.025; 0.034). T h i s  calculation confirms the advisabi l i ty  of select
ing t h e  var ia t iona l  i n t e r v a l  of the r a t i o  h : G given i n  Table 5. Let us now 
f ind  the r a t i o  2h : R. From the data presented here it follows t ha t  t h i s  
r a t i o ,  f o r  the  specimens shown i n  Figs.8.2 and 8.3 of the Vo1"ir vonograph, 

var ies  over the in t e rva l  (ik!$j) . The determination of t n e  r a d 0  2h : R 

i s  presented for ver i f i ca t ion .  Judging f r o m  the content of t he  monograph 
(Bibl.L), t h e  values of the obtained r a t i o  2h : R approximately correspond t o  
the  geometrical charac te r i s t ics  of the t e s t  specimens, since t h e  r a t i o  R : 2h= 
= 100 - 180 i n  the experiments described i n  tha t  study. Of course, bearing 
eq.(6.26a), i n  mind, the analysis  might be conducted without f irst  having re
course t o  experimental data.  

From eq.(6.26a), i t  follows tha t  /211 

(6 .26~)  

Let ,  f o r  example, 2h : R = 1 : 100. Then, 

I :R =0,165; h :I =0,029. 



This corresponds t o  the  var ia t ional  i n t e rva l  of the r a t i o s  4 : R and h :4 
found from the experiments given i n  the above monograph (Bibl.4). 

To summarize we may say that our assignment of eqs.(6.13) t o  one half-wave 
i s  suf f ic ien t ly  motivated. 

Returning t o  the  qu_estion of the connection between the  values of the  re--
duced e l a s t i c  constants A*, p z  and the  r a t i o  T : T,,, we f ind  from Table 5 
t ha t  t he  differences between A* and TI* and A, p, which reach 30%f 5% i n  ab
solute value occur during t h e  var ia t ion of t he  r a t i o  T : T,, over the in te r 
val  (0.75; 0.85)*. I n  t h i s  case, the constants %++ and c* found for duralumin 
a re  more sensit ive t o  the  var ia t ions of the  r a t i o  T : T,, than these same con
s t an t s  given f o r  s t ee l ,  To go deeper i n t o  the  meaning of these conclusions, 
l e t  us consider the simplified expression f o r  w(x) differ ing from eq.(6.18), 
and l e t  us d r a w  several supplementary conclusions. 

Let us re turn t o  eq.(6.13). If we again use eq.(6.15) t o  determine T,, 
and hereafter take T,, t o  mean i t s  minimum value expressed by eq.(6.17), then 
from eq.(6.13) we can f ind:  

Howeve*, 

(6.28) 

Consequently, 

w Gz -__ (7-1 x ( 2 - x ) .v Tcr -1) 
2R 

It should be noted t h a t  eq.(6.29) i s  approximate, since instead of the  
roots of eq.(6.15), which a r e  functions of n, we introduced i n t o  eq.(6.13) only 
the  m i n i "  value of the root, which was independent of n. Moreover, /212
eq.(6.29) does not satisfy a l l  the boundary conditions of the problem, although 
the expressions (6.27) obtained from t h i s  r e l a t ion  do s a t i s f y  the boundary con
di t ions.  This f ac t  i s  connected with the well-known properties of the expan
sions of functions i n  Fourier series.  

A direct  comparison of the r e l a t ive  accuracy of eqs.(6.18 and (6.29) i s  

* This interval. i s  s ta ted  as a rough approximation. 

wt Cf., fo r  instance, L.V.Kantorovich, Definite Integrals  and Fourier Series, 
Leningrad University, 1940 
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d i f f i c u l t  and requires special  investigation. Equation (6.29) has  t h e  advan
tage of s implici ty  over eq.(6.18). It a l s o  r e f l e c t s  the influence of the terms 
of  the se r i e s  t h a t  a r e  re jected i n  deriving eq.(6.18). 

Obviously a r e l a t ive ly  small e r ro r  i n  eqs.(6.18) and (6.29) may have a 
substant ia l  e f f ec t  on the  r e su l t s ,  since one must operate w i t h  the  fourth and 
second powers of the component 7b1. 

Let us now discuss t h e  physical  meaning of eq.(6.29). Since t h e  para
meter n did not sn te r  i n  eq.(6.29), the  quant i ty  & no longer has any de f in i t e  
meaning i n  t h i s  equation. Here, 4 may be taken t o  mean a segment, varying 
from the‘ length of a half-wave determined by the  sinusoid according t o  
eq.(6.18), up t o  the en t i r e  length of the tube. We assume, as before, t ha t  4, 
i s  the  length of a half-wave. 

The propert ies  of Fourier s e r i e s  permit eq. (6.29) t o  be d i f fe ren t ia ted  
twice, and the  resu l tan t  der ivat ive W i l l  have meaning everywhere over the un
closed i n t e r v a l  (0 ,  4). Consequently, s e t t i ng  v = 0.3, we f ind  

where 

and fur ther  

Instead of eqs.(6.&a) - (6.24d), we obtain 

Equations (6.22a) - (6.22b) now take the following form: m 



The data  given i n  Tables 3 and 4 permit us t o  f i n d  R f o r  a specif ied Si  
and T i r .  For t h i s ,  it i s  sufficient-to multiply the  values of w by a Wransi
t i o n  fac tor"  equal t o  0.727 : 0.15 = 4.85. T h i s  f a c t o r  can a l s o  be f o w d  f o r  
an a r b i t r a r y  value of Poisson's constant v ,  i f  we compare eqs.(6.19a! 
and (6.30). We have 

instead of eq. (6.26a). 

A comparison of the  "exact" r e l a t i o n  (6.26a) with t h e  approximate re la 
t i o n  (b)  shows t h a t  t h e  use of eqs.(6.19a) and (6.30) involves a considerable 
e r ror  i n  the  r e s u l t s ,  an e r r o r  of the  order of 20%. This undoubtedly i s  due 
t o  the  f a c t  t h a t  eqs.(6.19a) and (6.30) were obtained by d i f f e ren t i a t ion  of 
t he  approximate expressions w( x) 

If we use t h e  same t r a n s i t i o n  f ac to r  from w t o  i2 and from h : 4 t o  4 : R, 
d e t e d n e d  by eq.(6.26a) o r  r e l a t i o n  (b), then t h e  values of the r a t i o  T : T,, 
will be independent of t h e  cnoice of the  t r a n s i t i o n  fac tor ,  s ince i n  t h i s  case 
the  following equation W i l l  be t rue :  

f .T:T,,=W :  ( W  +3)=9 :(Q  +i) 
But s ince the  a r a c y  of e q s . ( 6 . 3 )  - (6.30) may be grea te r  than the  

accuracy of eqs.(6.1 - (6.19a), we s h a l l  consider the  conclusions obtained 
from eqs.(6.30) - (6 ,b) independently of t h e  conclusions obtained from 
eq.(6.18) and i t s  conse'quences. For t h i s  purpose, l e t  us make use of Tables 3 
and 4 w i t h  t h e  t r a n s i t i o n  f a c t o r  (b)  of 4.85 f o r  v = 0.3 and consider the 

quant i ty  -4 as an independent parameter, which i s  equivalent t o  adopting t h e
R 

r e l a t ion  (6.26a) o r  (6.26b). 
-

It i s  obvious tha t ,  under these conditions, the  reduced constants A* 
and F* will vary more rap id ly  as T approaches T,, than they would according t o  
the calculat ions based on eq.(6.18). I n  f a c t ,  a t  values of the r a t i o  4 : R = 
= 0.15 - 0.20, the  changes i n  t h e  reduced constant E* r e l a t i v e  t o  p, which i n  

-absolute value reach 30% f 5$, occur while t h e  r a t i o  T,, : T varies over the  
in t e rva l  (0.67, 0.79). I n  t h i s  case, h+c v a r i e s  more rapidly than;*. 
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Cri te r ion  of i n s t a b i l i t x .  We mentioned above tha t ,  i n  t he  zone of 424 
dominant compressive stresses, the  parameter A-S decreases and E* increases .  
This points  t o  a decrease i n  t h e  reduced Poisson constant T* i n  t he  zone of 
dominant compressive s t resses .  While decreasing, t h e  constant <+ may become 
equal t o  zero and then become negative. Above, we d id  not consider t he  mean
ing  of the  change i n  s ign  of t he  reduced e l a s t i c  constants. 'Let us f i l l  t h i s  
gap somewhat. 

It i s  easy t o  prove t h a t  t h e  spec i f ic  work of deformation W i l l  have a 
pos i t ive  d e f i n i t e  quadratic form i f  the Poisson constant varies over the  

in t e rva l  (-1, +). Here, as i s  w e l l  known, the  proof of the  Kirchhoff theo

r e m  i s  va l id  and the  so lu t ion  of the  boundary problems of the s t a t i c s  of l i n 
early deformed bodies i s  unique, i .e . ,  the  s ta te  of equilibrium of such bo
d ie s  i s  s tab le .  Yowever, no negative values of t h e  Poisson constant have been 
found i n  ac tua l  i so t rop ic  bodies. Evidently, t h i s  experimental f a c t  i s  not 
random but  depends on the  ac tua l  propert ies  of matter which are not re f lec ted  
by the s implif ied scheme of the continuous medium and, consequently, a l s o  not 
by the ana ly t i c  s t ruc tu re  of t h s  spec i f i c  energy of deformation. 

Most authors assume t h a t  t he  Poisson constant i s  always pos i t ive .  It w a s  
s ta ted  by E.Trefftz, erroneously, t h a t  t h e  pos i t i ve  nature of Poisson's con
s t a n t  results f ron  the requirement of the  pos i t ive  determinacy of t h e  spec i f i c  
energy of deformation-:+. Let us assume, a t  f i rs t ,  according t o  experiments, 
t h a t  i n  a real  iso- t ropic  body the  Poisson constant i s  a lways  pos i t i ve  and tha t  
the c r i t e r i o n  of instabi l i ty%++i s  t h e  change of s ign of t h e  reduced Poisson 
constant V-3. Let us f i n d  t h e  m i n i m u m  value of t he  compressive force  T a t  
which the  Poisson constant, i n  t h e  zone of dominant compressive stresses, be
comes negative. Equating X-X t o  zero, we f ind ,  according t o  eq.(6.25), 

I X I  I + x ,  --	3 =o. (6.35)2 

Making use of eqs.(6.24.a) - (6.24.b) and t h e  da ta  given i n  Table 2 f o r  
duralumin, we obtain a? equation biquadrat ic  i n  u. The smallest pos i t i ve  r e a l  
root of t h i s  equation i s  

-
wc-= 0,098. (6 .36)-

It will be seen from Table 5 t h a t  t o  t h i s  value of w,, and t o  the /215
ra',io h : 4, = 0.03 corresponds the  following value of t he  r a t i o  T : T,, : 

-:-E.Trefftz, Mathematical Theory of E l a s t i c i t y  ONTI,  1934, pp.39-40. 

%+ The use of t h i s  i n s t a b i l i t y  c r i t e r i o n  i s  not mandatory. A d i f f e ren t  and 
more na tura l  approach i s  possible.  See below, eqs.(6.63a) - (6.63b) etc.. 
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where T= i s  the  hew c r i t i c a l  value of t he  compressive force T. 
and grea te r  root of the equation 

The second 

3I x, 1 --x, - -=o,
2 

established f o r  the zone of dominant t e n s i l e  s t resses ,  i s  

To t h i s  roo t ,  a t  t he  r a t i o  h : 4 = O.G3, there corresponds a value of the  
r a t i o  T : T,, close t o  unity.  The first r o o t  carresponds t o  t h e  ari thmetic 
mean value of the c y i t i c a l  load, and the second t o  the upper value. According 
t o  data given i n  theVo1"irmonograph (Bibl.4), t h e  experimental r a t i o  T : T,, 
ranges from 0.384 t o  0.700. 

Thus, t he  ari thmetic mean of the c r i t i c a l  load found by us approaches the 
upper limit of the experimental data. 

Up t o  now we have been relying on cq.(6.35), derived from the approximate 
expression (6.18). Let us now make use of the  equation 

3It, I +E* --2 =0, (6.40) 

resu l t ing  from eq.(6.3/+a). Obviously, the  required solut ion of t h i s  equation 
A s  aWill be obtained from the  solut ion (6.36) a f t e r  multiplying it  by 4.85. 

resu l t ,  we obtain 

-
llCr=0,475.-

Assuming t h a t  t h e  r a t i o  4 : R r  0.18, we f ind  tha t  

Consequently, here too the c r i t i c a l  value of the load i s  outside the varia
t i ona l  region of the  experimental data. 



Two possible causes of the contradiction between the  r e s u l t s  obtained by 
us f o r  the approximate determination of t he  c r i t i c a l  value of the load and t h e  
experimental data could be given. 

T’ne f i r s t  i s  tha t  we based our calculat ions on the  averaged value of 
(Fel ),,, , instead of on (Sal ),,, . 

The second cause of the  unsat isfactory r e su l t s  of t he  theore t ica l  inves
t iga t ions  undertaken by us l i e s  i n  the  choice of the  parameter a .  W e  have /216 
already noted repeatedly tha t  t he  proper se lec t ion  of the  region of approxima
t ions  i s  of subs tan t ia l  importance. It i s  t h i s  choice t h a t  determines the val
ue of the constant G, entering i n t o  t h e  formulas determining A* and !A*.We 
have assumed tha t  t h e  s t r e s ses  i n  the s h e l l  reach the  y i e ld  point, and from 
-these conditions we have d e t e r s n e d  the value of a .  But f o r  su f f i c i en t ly  long  
and th in  shel ls ,  the  l o s s  of s t a b i l i t y  may occur before the  s t r e s ses  reach t h e  
y ie ld  point. Therefore, the above conclusions a re  t rue  only f o r  su f f i c i en t ly  
<hick and sho.r t  she l l s ,  i n  which there  a r e  no losses  of s t a b i l i t y  under s t ress 
es  approaching t h e  y i e l d  point.  

For other shells, one must decrease t h e  values of the  parameter U t o  be
low those shown i n  Table l. This leads t o  an increased influence of the non
l i n e a r  t e r m .  But the  d i f f i c u l t y  here consis ts  i n  the  determination of a. 

Let us f ind the  value of the r a t io  T,, : T,, s t a r t i n g  from the  unaveraged 
values of A+ and p++ corresponding t o  the  Ftudy of l o c a l  i n s t a b i l i t y  i n  a med
ium approximately equivalent t o  a shel l .  

Instead of eqs.(6.2f+a) - ( 6 . a d )  we w i l l  then have 

=5x, -- 0 , 2 7 3 ~ ~(-3 m,, +nlo)w4, 

2 

( 3GI =5y, =0 , 2 7 3 ~ ~m,,+n,,) w4, 

-
y, =3y2=0 ,523~- *(-3 nz21-k i t z l )  w3. 

2 

Further, we f ind 

q-3 - I x 1 , G , ) ,  
2 


Equating A-3 t o  zero, we obtain an equation biquadratic i n  u): 
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-- -I XI ITX, --3 
=0.

2 

The smallest pos i t i ve  rea l  root  of t h i s  equation, 
as follows: 

wcr= 0,058.-

A d i r e c t  calculatiol?, together with Table 5, 
and the  r a t i o  h : 4, = 0.03 correspond t o  

(6.45) 

determined f o r  duralumin, i s  

( 6  -46) 

shows tha t  t h i s  value of w,, 
-m 

According t o  the experiments described i n  tne  Vo1"ir monograph (Bibl.4), 
t h e  mean value of the r a t i o  T : To, i s  --.0.61-%. The value of T : Tc, found by 
xs l i e s  roughly a t  t h e  center  of the i n t e r v a l  between the  experimental mean 
value of T : T,, and t h e  upper boundary of t he  experimental data, which i s  0.7. 

However, we derived eq.(6.4?) by raking use of the sequels of eq.(6.18). 
Let us consider the conclusi.ms based on eq.(6.29). By analogy with eq.(6.41), 
we f i n d  

Assuming as above t h a t  the r a t i o  4 : R = 0.18, we have 

Tcr: T,, r0,59. (6.49)-

This value i s  somew5at l e s s  than the  mean experimental value given by 
Volfmir  (Bibl.)!), wnich i s  0.61. For 30KhGSA s t ee l  [eq.(6.48)], we ge t  

Accordingly, 

36 The value of Volrmir's dimensionless parameter p (Bibl.4) corresponding 
t o  T : Tc, = 0.66 i s  0.396. The mean value according t o  experiments i s  0.364. 
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It will be c lear  from t h i s  t h a t  a calculat ion,  w i n g  the  maximum values 
of the  components of RS1, y i e lds  sa t i s f ac to ry  r e s u l t s .  

Now l e t  us consider the  parameter %. A s  above, we s h a l l  confine our
selves t o  an approximate de te rmina t im of t h i s  quantity.  

We s h a l l  base our determination of the  parameter a on eq.(6.29), which 
permits us t o  f i n d  the  madmum bending s t r e s ses  i n  t5e s h e l l .  This makes i t  
possible t o  f i n d  the va r i a t iona l  limits of the  s t r a i n  tensor components o r  the  
region of l i n e a r  approximation of +,he components of t h e  finite-deformation 
tensor or,  i n  other  words, the  parameter 3. 

Double d i f f e ren t i a t ion  of khe equivalent equations (6.27) and (6.29) i s  
permissible, s ince the  trigonometric s e r i e s  obtained on d i f f e ren t i a t ion  of 
eq. (6.27)converges t o  the  der iva t ive  of the right-hand s ide  of eq. (6.29). 

S t a r t i zq  from eq.(6.29), we f ind  from our paper (Bib1.23d) t h e  m a x i m u m  
absoluLe value of the normal s t r e s s  due , to f lexure and campression: 

EvI Jmax I = 
2 
T 
a + -3 It ( - I)-'. (6.52) 

Hence, we f i n d  the  new value of t h e  parameter U. Let US c a l l  t h i s  
value a+*. Making use of eq.(6.17), we f ind  

Equation (6.53a) can be put i n t o  t!le following form: 

Further, bearing i n  mind eqs.(6.30), (6.32) and considering the  unaveraged 
values of A+: and CL*,we f i r d ,  by analogy t o  eqs.(6.33a) - (6.33b), t h e  r e l a 
t i ons  



It goes without saying t h a t  these r e l a t ions  are t r u e  o n l y  f o r  v = 0.3, 

s ince we have already assumed t h a t  h = 2 &. T,qeretained here the l i t e r a l
2 

designation v o n l y  t o  make the  transformation more d i s t i n c t .  We have fu r the r  

The equation f o r  determining t h e  c r i t i c a l  values of i: here takes the following 
form : 

._ -I �1 / + E ?  -
3 -=o. (6.56)2 

This i s  an equation of the  fourth degree i n  3. L e t  us denote i t s  smallest 
posi5ive root by DSr. 'de find, without solvin,? eq.(6.56), t h e  approximate 

-value of ;kr  , makizg use of the previous calculat ions.  

Now, comparing eqs.(6.%a) - (6.54b) with eqs.(6.33a) - (6.33b) and / a 9
bearing i n  mind t h a t  t h e  difference i n  the  numerical f ac to r s  i s  connected with 
the f a c t  t ha t  eqs.(6.5/+a) - (6.54b) y ie ld  t h e  values of A%- and ~ 9 ,correspond-
in,.: t o- t he  maximum values of the components of ins tead  of the mean V a l 
ues, A%- and Go, we ge t  

This equation can be put i n t o  the  following form: 

where 
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Consequently, the required value of i & r  i s-

(6.60) 

while the  corresponding value of the r a t i o  T : Tc, i s  

(6.61) 

Thus, t h e  r a t i o  T,, : T,, does not depend e x p l i c i t l y  on the  r a t i o  h : R. 
The impl i c i t  dependencF of the  r a t i o  Tu : T,, on h : R i s  connected with t h e  
presence of the quant i ty  LfL i n  eq.(6.58). This r e s u l t  i s  apparently con
firmed by the  experimentally establis'rled f a c t  of the  weak dependence of the 
r a t i o  Tu : T,, on t h e  r a t i o  h : RX-. Equation (6.61) does not confirm i n  an 
e x p l i c i t  form tile es tabl ished experimental tendency of the  r a t i o  T,,- : T,, t o  

decrease w i t h  decreasing r a t i o  3%.R 
Consider now t i e  numerical value of the  r a t i o  T,, : T,, for duralumin, /220 

put t ing  v = 0.3; a-1 = 2.28 x 10";A =  = 0.257 [ t h e v a l u e  of i& i s  taken from 
eq. (6.14.8) 1. We have 

Tcr :7'cr EZ 0,654. 
(6.62)-

Consequently, t he  methods of determining the parameter a increase t h e  
deviat ion of t he  r a t i o  T,, : T,, from the  mean experimental value, as com
pared with t h e  previous method, which l e d  t o  eq.(6.49). 

We note a l s o  t h a t  eqs.(6.57) - (6.58) can be used a t  small values of t he  
r a t i o  h : R, i . e . ,  f o r  very t h i n  she l l s ,  s ince already a t  2h : R = 0.01 the  
normal stress l o m a x l  calculated from eq.(6.52) exceeds the  y i e ld  point for 
duralumin D17. 

g- C f .  (Bibl./+, p.322). 

%+Ibid.  



We have used various methods, based on t h s  general  method of l inear iza
t ion,  i n  inves t i s a t ing  t h e  values of the  r a t i o  To, : T,, corresponding . t o  t he  
vanishing of the  Poisson constant v+: of a l inearTy deformable medium, approx
imately equivalent t o  a m e d i u m  with f i n i t e  deformations. 

Despite t h e  difference i n  the  ana ly t ic  expressions of the  r a d i a l  dis
placement w used by us and despi te  t he  employment of both averaged and maximum 
absolute values f o r  t he  component Sol, t he  values of t h e  r a t i o  T,, : T,, were 
found t o  be r a the r  s t ab le  under var ia t ions  of t h e i r  determination'methods. 
This shows t h a t  t h e  conclusions obtained here cannot b e  due t o  random agree
ment of the  numerical results. Rather, t h i s  must b e  a r e f l ec t ion  of ac tua l  
processes taking place on any loss of  s t a b i l i t y  of t h e  shel l .  

L e t  us  now re tu rn  t o  determination of the  r a t i o  T,, : T c p .  Above, we 
have used the change i n  s ign of v+c o r  & o d y  as a cr iFer ion of i n s t a b i l i t y .  

A di f fe ren t  approach t o  determination of t he  r a t i o  T,, : T,, i s  possible,  
based on the  use of eq.(6.17), i n  which the  e l a s t i c  constants E and v must be 
subst i tuted by E+: and v9, corresponding t o  I m a x ,  o r  %- and vs found from 
!,:?e average values of I .  Using eqs. (6.17) and (6.23a), we obtain 

and, on using t h e  averaged values of ]ralI.,I 

I f  we express E* and v+ i n  t e rns  of A% and L*, and use eqs.(6.!+lca)-(6.&L+b) 
then eq.(6.63a) i s  transformed i n t o  an  equation algebraic  i n  LC. A similar  /221 
equation C a r l  be obtained from eq.(6.63b). 

To f ind  the smallest real  pos i t ive  roots  of these equations, corresponding 
t o  the  minimum values of the r a t i o  T,,- : T,,, we employed a graphical method. 
Let US put 

h
assuming v = 0.3; 0.03. 

Let us introduce the coordinates (&, fc )  (see graph). 
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-
m o t t i n g  on the  plane (a, f c )  or  (E, fc) t h e  functions f(w), +(u)

and ~ ( u J ) ,we f ind  the  roots  sought. It Will be  seen from the  graph t h a t  the  
value of T- : Tcr found fbom eq.(6.63a) i s  0.68, while t h a t  calculated from 
eq.(6.63b) 1s  0.78. 

-
Tne graph a l s o  snows t h a t  t h e  values of v* and v*, corresponding t o  the  

c r i t i c a l  values of t i e  load, l i s  i n  the i n t e r v a l  (-1, 0). For W equal t o  -1, 
the quant i ty  E* vanisnes, which evidently corresponds t o  a complete l o s s  of 
t he  load-carrying capacity of the she l l .  A t  T*= -1, z*similarly vanishes. 

Thus the  region of i n s t a b i l i t y  corresponds t o  the  var ia t ion  of v* andT* 
m e r  tne  i n t e r v a l  (-1, 0). These regions a r e  shown by hatc'ning i n  t h e  graph. 

We note Turther t h a t  tile points  of the  planes (u), f@) or  (u), fc)cor-, /222 
responding t o  the c r i t i c a l  valuss of tine r a t i o  T : T,, always l i e  i n  the  in
s t a b i l i t y  regions between the  theo re t i ca l  upper values and the  theo re t i ca l  low
e r  value of this r a t io .  

If we use eq.(6.63a), then the value of Tcr : Tcr = 0.68 found by US i s  
very close t o  t h e  ar i thmetic  mean of the upperand lower values of t h i s  r a t i o  
found by the  theore t ica l  energetic method. The ar i thmetic  mean of the  upper 
and lower c r i t i c a l  values of t he  r a t i o  T : T,, i s  0.65. A l l  this confirms the 
expedience of using the  method we have considered i n  the problems of s t a b i l i t y  
of a she l l .  Tnis method permits an appro>xGnate determination of the  mean val
ues of the c r i t i c a l  load i f  we f ind  i t s  upper value from the solut ion of the  
problem i n  l i n e a r  formulation. It i s  c lear  t3at t h e  same method makes it a l s o  
possible  t o  evaluate the lower c r i t i c a l  value of t h e  load. For example, find
ing  t h a t  T,, : T,, equals 0.68, we determine the  h w e r  c r i t i c a l  value of this 
r a t i o  as 038 - (100 - 0.68) = 0.36. I n  t h e  Voltmir monograph (Bibl.4) it is  
shown tha t  the  lower c r i t i c a l  value of the r a t i o  T : Tcr i s  about 0.33. 

'We s'lall not consider the r e s u l t s  of the  appl icat ion of eq.(6.29) al
though, as w i l l  be seen from t h e  preceding discussion, we can here obtain a 
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value of the  r a t i o  T : T,, s t i l l  c loser  t o  the  mean theo re t i ca l  and experi
menbal value. 

Section 7. Brief Conclusions 

Tne contents of t he  preceding Section confirm t h e  usefulness of applying 
t h e  metLlod of l i nea r i za t ion  of the  components of the finite-deformation tensor 
developed by us a t  the  beginning of t h i s  Chapter. The difference between t h i s  
method and other approximate methods of solving nonlinear problems, f o r  ex
ample the  method of Galerkin and R i t z ,  i s  t h a t  we  did not start out from the  
content of spec ia l  problems suggesting t h e  form of the  approximation function, 
but t r i e d  t o  derive the  general pr inciples  of construction of t he  approximate 
so lu t ion  su i t ab le  f o r  extensive classes  of boundary problems. S t r i c t l y  speak
ing, our method i s  su i t ab le  f o r  the  approximate solut ion of a v  nonlinear 
boundary problem of s h e l l  theory. This method, i n  i t s  concept, i s  close t o  
t h e  well-known methods of ana ly t ic  synthesis  of mechanisms according t o  
P.L.Chebyshev and was therefore  included by us i n  the  pr inc ip les  of the  an
a l y t i c  mechanics of she l l s .  

We s h a l l  make concluding remarks on the  cor re la t ion  between the  conse
quences of t he  method of l i n e a r  approximation of the  components of t he  f i n i t e -
deformation tensor and t h e  theory of s t a b i l i t y  of she l l s .  

1. O n  the  Mechanism of Development of a Local Equilibrium and Motion of 
I n s t a b i l i t y  of a She l l  L2a 

A study of the  propert ies  of a continuous medium w i t h  small deformations, 
approximatelgT replacing a s h e l l  with f i n i t e  deformations, y ie lds  a preliminarg 
idea  as t o  the  course of the  development of a l o c a l  equilibrium or motion in
s t a b i l i t y  of a she l l .  

When the  load approaches the  upper c r i t i c a l  value, there  i s  an increase 
of t he  asymmetry of s t r e s s  d i s t r ibu t ion  over the thickness of the she l l .  

I n  the  zone of dominant t e n s i l e  s t resses ,  the  y i e ld  point  i s  reached 
considerably before the  load i x r e a s e s  t o  the  upper c r i t i c a l  l i m i t .  After 
loss of the  load-carrying capacity, by t h e  mater ia l  i n  t he  zone of tension, t h e  
load i s  transmitted t o  t h e  mater ia l  i n  t he  zone of dominant compressive s t r e s s 
es, i f  t h e  mater ia l  i n  t h a t  zone i s  i n  the  s t a b l e  s t a t e .  

On t h e  bas i s  of the  propert ies  of the medium approximately equivalent t o  
the material  of t he  she l l ,  i t  can only be  sa id  tha t ,  i n  t h e  zone of compress
i v e  s t resses ,  processes take place t h a t  approadmate the  s t a t e  of t h i s  subst i 
tuted medium t o  t h e  unstable s t a t e .  T h i s  i s  characterized by a change i n  s ign  
of Poisson's constant v+:-and i t s  passage through zero. 

The i n s t a b i l i t y  of t h e  medium i s  accompanied by a motion of i t s  elements, 
representins the  elements of t he  she l l ,  i n  accordance with t h e  Gauss pr inc ip le  
of l e a s t  constraint, or w i t h  the Le Chatelier-Brown principles-. 

?:-The Le Chatelier-Brown pr inc ip le  i s  as follows: If any stress or force i s  
brouzht t o  bear upon a system i n  equilibrium, the  equilibrium is ( con t fd )  
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These pr inciples  a r e  i n  pa r t i cu la r  d i r e c t l y  connected wi th  t h e  methods 
of studying t h e  theory of s t a b i l i t y  of s h e l l s  recent ly  proposed by the  author 

, I

A.V .Pogorelov*. 
I . 


2. The Role of Random Imperfections cf Shape 

The losses  of s t a b i l i t y  of a s h e l l  cons t i tu te  a nonstationary dynamic 
wave process which o r ig ina l ly  a r i s e s  as a r e s u l t  of various random sources, 
even i f  t he  load i s  far from the  upper c r i t i c a l  value and there  are noie of 
the f l exura l  deformations considered by us i n  the  preceding Subsection>s-. /;?4
These random fac to r s  include the ini t ia l  imperfections ef shape, which may be  
in te rpre ted  as the existence of i n i t i a l  f i n i t e  displacements of points  of t h e  
midd le  surface.  

To t h i s  i n i t i a l  displacement correspond components of the  antisymmetric 
' 	 tensor i % k .  Returning t o  the  above axisymmetric problem, l e t  us assume that 

the  deviat ion from the  cy l indr ica l  shape of t he  bas ic  surface i s  determined 
by the function w O ( ~ ) .  To t h i s  function corresponds a f i n i t e  component 

A s  w i l l  be seen from eqs.(6.22a) - (6.22b), the  existence of the coma ~ ) ~ .
ponent (r&l)oleads t o  a g rea t e r  va r i a t ion  of the f i e l d  of s t r e s ses  u d e r  'oad

ing  of the  s h e l l  even if the terms -1 (2 qo + n1o) (G, 1;: and -1 (2q? + 
5 2 3 2 

+ 	nil) (i= 1, 2) a r e  of the order of a" , i.e., very s m a l l  i n  magari
tude 

-
These quant i t ies  may exert  a great  inf luence on A* and A-% and, conse

quently, may decrease t h e  value of the  c r i t i c a l  load below t h a t  found above. 

3. Regions of S ta t ic '  I n s t a b i l i t y  

I f  ,we make use of eq.(6.19a) and s u b s t i t u t e  Tbl i n t o  eqs.(b.lza) - (6.12b), 
then XX- and p* Will be per iodic  functions of the  x-coordinate. To obtain t h e  
next approximation, l e t  us use eqs.(2.14), t o  f ind  the s t r e s s  tensor compon
ents.  Then, applying one of the  methods of reduction, we shall-obtain the 
system of equations of equilibrium of a cy l indr ica l  she l l ,  bu t  this system of 
l i n e a r  equations, as already noted i n  Sect.5, will have var iab le  coef f ic ien ts  

- i n  th i s  case periodic coef f ic ien ts  -which depend on the parameter (% l)-I 
(cont fd)  displaced i n  a d i rec t ion  which tends t o  d i r h x k h  the i n t e n s i t y  of 
the  s t r e s s  or force.  (Cf. L.Landau and Ye.Lifshits, S t a t i s t i c a l  Pnysics, , .  

1 I ., Gostekhizdat, 19/&0). 
+ Cf. A.V.Pogorelov, Contribution t o  the Theory of E l a s t i c  Shel ls  i n  the  

, . /  i .'Transcr i t ica l  Stage, Kharkov University, 1960. The isometric deformations of 
, .  , ' t h e  middle surface of the s h e l l  on which his theory i s  based a r e  d i r e c t l y  con

nected with these pr inciples .  

W- Various aspects of t h i s  idea  may be found i n  the  monographs of V.V.Bolotin 
(BibLZb, 2c). 
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Such equations show the  poss ib i l i t y  of  t h e  existence of i n s t a b i l i t y  regions 
replacing t h e  i so l a t ed  c r i t i c a l  values of T obtained from the  quasi l inear  
equations of the  f irst  approximation. These same remarks apply t o  t h e  prob
lems of d y m L c s .  

A complete invest igat ion of t he  questions touched upon here would be be
yond the  scope of khis book. We note again t h a t  a number of the above proper
t ies  f o r  nonlinearly deformed s h e l l s  can be found by other methods, without 
the  us2 of the l i n e a r  approximation developed by us f o r  t h e  components of t he  
finite-deformation tensor.  

Section 8. 	 Construction of a FIomogeneous I so t ropic  She l l  Approximately /225 
Equivalent t o  a Layered She l l  

I n  Sects. 26-27 of Chapter 111, we considered t h e  equations of motion of 
a two-layered she l l .  Retaining twelve degrees of freedom on the  normal t o  the  
bas i c  surface of t he  shell, we obtained a system ofequat ions ofmotion of t h e  
thir ty-s ixth order. Clearly, we m u s t  seek methods for obtaining a mathematical 
fornulat ion of the pxblem tha-t would make i t  solvable i n  practice.  

W e  sha l l  here consider the  method of solving t h e  problem of the motion of 
a layered shel l ,  based on the  approximate replacement of t h i s  she l l  by a homo
seneous shel l .  Studies i n  t h i s  direct ion,  and a study of a simplified system 
of equations by means of the  se lec t ion  of a basic  surface of the  layered she l l ,  
have been performed by E.L.Aksel*rad, E.L.Grigolpk, and V.I.Korolev (B ib l . lSa ,  
b, 21, 2 ~ ) .  

I n  contrast  t o  these invest igators ,  we s h a l l  here apply methods of approx
imation functions connected with t h e  requirement of t he  least-square e r ro r  i n  
constructing t h e  Lagrange flinction L3:- of a homogeneous s h e l l  approximately 
equivalent of t he  layered shell. 

We s h a l l  here ind ica te  three methods of solving t h i s  problem. The f irst  
i s  based on the  consideration of an incompatible system of algebraic equations 
establisned independently of the propert ies  of the var iab les  entering i n t o  the  
Lagrange function. The second method i s  connected with a general evaluation 
of the  magnitudes of these variables. The t h i r d  method r e l i e s  on a prelim
ina ry  solut ion of spec i f ic  problems of t he  dynamics of homogeneous shell’s. We 
s h a l l  not base our work here on (111, 26.8 - 26.11), since the  presence of t he  
covariant der ivat ives  Vi uJ ( O )  i n  the  expressions f o r  t he  coeff ic ients  V j  ( O  

and VJ(’) makes these equations unsuitable f o r  solut ion of the  problem with 
which we a re  now corlcerned. 

We will make use of an  idea whic5 i s  the  inverse of t h a t  advanced by 
L.A.Molotkov i n  3ne of h i s  papers on e l a s t i c  waves i n  layered media%. He con
s iders  a medium, in!!omogeneous i n  the  d i r ec t ion  of one of t he  coordinates, as 
t’le l imi t ing  case of a layered medium. We shall consider the  layered s h e l l  as 

X- L.A.Kolotkov. Engineering Zquations of Vibrations of Plates  with a Layered 
Structure.  Questions of the Dynamic Theory of t h e  Propagation of Seismic 
Waves, Vol. V, Leningrad otd. In s t .  m t e m .  AN SSSR, 1961 



a spec ia l  case of a s h e l l  inhomogeneous i n  the d i rec t ion  of the  normal t o  i t s  
b a s i c  surface. This method of studying the  mechanics o f  layered she l l s  of 
course involves tine d i f f i c u l t i e s  which will,be  discussed‘ below. 

I. Application of an Incompatible System of Algebraic Equations 1226 

We shall confine ourselves t o  a study of the question i n  i t s  l i n e a r  for
mulation. Consider a s h e l l  inhomogeneous ’ i n  the  d i r e c t i o n  of %he normal t o  
t h e  bas i c  surface. Let us se l ec t  the bas i c  surface as indica ted  in.(111), 
Sect.25). The object of the  approximation will be the  Lagrange function LdS 
of a prismatic elenent of a s h e l l  of height 2h with the  base area dS: 

where TdS and RdS are ,  respectively,  the k i n e t i c  energy and the  s t r a i n  energy 
of this element of the  she l l .  

The functions L, T and II a r e  the  respect ive dens i t ies  of t he  Lagrange 
function, of t h e  k i n e t i c  energy, and of t he  s t r a i n  energy. 

Hereafter, f o r  brevi ty ,  we s h a l l  often omit the  term t ~ d e n s i t y t ~and c a l l  L, 
T and II respect ively the Lagrange function, t he  k ine t i c  energy and the straTn 
energy. 

L e t  us construct a homogeneous s h e l l  of thickness 2h*, of dens i ty  p% and 
vdth t h e  e l a s t i c  Lam6 constants A* and p*, assuming t h a t  t h e  bas ic  surface of 
t he  inhomogeneous s h e l l  and t h e  bas ic  surface of t he  homogeneous she l l ,  
approximately equivalent t o  i t , co inc ide ,  s t a r t i n g  out from the  condition of 
l e a s t  e r ro r  

a ilL -L*, (8.21 
, _, -

which a r i s e s  i n  the  above-indicated subst i tut ion.  

me required quant i t ies  p*, A*, @ and h* must be found from the  condi
t i ons  of optimum approximate representat ions of t he  f m c t i o n  L by t h e  func
t i o n  L*. 

The number of avai lable  quan t i t i e s  increases  t o - s i x  i f  we abandon the 
preliminary se l ec t ion  of the bas ic  surfaces i n  t h e  layered s h e l l  and the  s h e l l  
equivalent t o  it. The idea of se lec t ing  t h e  bas ic  surface so as t o  introduce 
s implif icat ions i n t o  the system ofequat ionsof  the  theory of layered s h e l l s . i s  
discussed elsewhere (Bibl.15, 24). 

Since we intend i n  the following t o  discuss only the  pr inciples  of the  

* The meaning of t h e  requirement of l top t i”  representationt1will be explained 
below. 
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proposed method, we will almcrst everywhere confine ourselves t o  an a rb i t r a ry  
select ion of t h e  four abovp parameters, 

We s h a l l  confine ourselves t o  t h e  problem of determining these quant i t ies  
only as fumt ions  pi , A, , pi , hi f o r  the  layered she l l ,  dispensing with t h e  
study of t h e i r  connection with t h e  metric of t he  she l l .  I n  tha t  case, we may 
pass t o  the  l o c a l  Cartesian system of rectangular coordinates with the  altis OZ 
directed d o n ?  t h e  normal t o  t h e  bas ic  surface in s ide  the  s h e l l ,  and the  
axes Ox' located i n  a plane tangent t o  the basic  surface. I n  t h i s  case, gii  = 
= 8" = 1, -.lk = 0 (i # k) :  an element of volume i s  expressed by the  deriva
t i v e  dxl &'&, and the element of a rea  dS Will be equal t o  dxldxa. 

I n  ccnsidering Ci we must express L and L s  i n  t h e  same variables.  I n  /227
t h e  choice of these var iables  we s h a l l  start out from the  well-known proper
t ies  of the f i e l d s  gf displacements, s t ra ins ,  and s t resses  i n  a layered she l l .  

It has been shown i n  Chapter 111, Sects.25-27, tha t ,  i n  a layered she l l ,  
t he  componenf,s of the  displacement vector, the  components Eik(i, k = 1, 2) of 
t h e  s t r a i n  tensor, and the  components T r 3 ( i  = 1, 2) of the stress tensor are 
continuous. 

Xe shall base our work on the  assumption t h a t  t he  f i e l d s  of these quanti
t ies coincide i n  t h e  layered s h e l l  and t h e  equivalent homogeneous s h e l l  t o  
within $he limits of t h e  prismatic element mentioned above. 

It i s  well known t h a t  a l l  corkinuous functions of t h e  coordinate z can 
be  aFproxk"aed by polynomials of zs Since we shall determine L and L s  with 

and h*$, and intend t o  give here only thean accuracy t o  t e r m s  of the order h 
general pr inciples  of the  method preposed, l e t  us put 

Further, from Zooke's law, we f ind  

where 
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(8.7) 

Equations (8.5) - (8.6) show that the representation of the components
of the displacements by (111, 15.5) is inapplicable to the problems of the v i 
brations of a layered shell. 

In fact, as w i l l  be clear from eqs.(8.5) - (8.6), the continuwx coeffi
cients of Z. in the formulas determining the components uJ are expressed in 
terms of piecewise-continuous functions of z, constant on those segments of 
the 02 a x i s  included within the layers. This dependence of the coefficients /Z8
of zm on z is not reflected in explicit form by (111,15.5). 

Let us a l s o  approximate the contiinums components cik of the strain ten
sor by the polynomials 

t 

($.$a) 


in this connection 


2 

(8.8b) 

i -1  

Now let us express the discontimotls components of the strain tensor and 
the stress tensor in terns of continuous compoxents. We have 
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Since we are inves t iga t ing  the  l o c a l  propert ies  of the  Zunction L, with
out going outside t h e  boundaries of t he  prismatic element of t he  s h e l l  defined 
above, we must consider the derivatives o, (i= I, 2) of t h e  coeff ic ients  of t he  
polynomials here introduced as new, l o c a l l y  independent, quant i t ies .  This, 
m D r e  par t icular ly ,  explains the  appl icat ion of the  independent representations,  
by the  polynomials, of the wmponents cik without inversion t o  eqs.(8.5)-(8.6), 
s ince t h i s  would not lead  t o  a decrease i n  the  nanber of l o c a l l y  independent 
quant i t ies  introduced by us. 

All t he  loca l ly  independent quant i t ies  entering i n t o  eqs. (8.3) - (8.10b) 
belong t o  the  var iab le  f i e l d  i n  terms of which the  Lagrange funct ion L of an  
element of the continuous medium i s  expressed. They a r e  a general izat ion of 
hhe generalized coordinates and generalized ve loc i t i e s  knom from c la s s i ca l  
mechanics+. We r e c a l l  t h a t  i r ?  the c l a s s i c a l  Lagrange function, the  generalized 
ve loc i t i e s  9j and t % e  generalized coordinates 9j are considered as inde- /229 
pendent q m n t i t i e s  i n  s e t t i n g  ' ~ pt h e  equations of notion. Their i n t e r r e l a t i o n  
i s  taken i n t o  account a f t e r  sett in-? -1p the  equations of motion based on t h e  

elementary equations oJ = - I n  t h e  problem of i n t e r e s t  t o  us, t he  in t e r da_l
d t '  

r e l a t i o n  of the  var iab le  f i e l d s  i s  expressed by more complex re la t ions  re
s u l t i n 5  from the equations of e l a s t i c i t y  theory. For example, from eqs.(8.4) 
arld (8.6) we may f ind  

(8.11) 

Squation (6.7) must be  associated with these  re la t ions .  

k number of r e l a t ions  result from eqs.(8.6) - (8.1Ob), but we s h a l l  not 
consider them here, s ince we are not s e t t i n g  up a system of equations of mo
t i o n  of a layered s h e l l  bg the  methods of c l a s s i ca l  ana ly t i ca l  mechanics, bu t  
propose t o  make use of the Lagrange function L as t h e  fundamental quant i ty  i n  
Lhe problem of constructing a homogeneous s h e l l  approximately equivalent t o  a 
layered she l l .  

It follows from eqs.(8.3) - (8.lOb) t h a t  t h e  number of var iable  f i e l d s  
entering i n t o  the  Lagrange funct ion i s  t,hirt;y-one. It i s  easy t o  e s t ab l i sh  
t h a t  t h i s  number does not depend on the  number of l aye r s  n i n  the  s h e l l  if 
n >1. For n = 1, tne nmber of variables of t he  f i e l d  can be reduced t o  
twenty-s even. 

Consider now the  k ine t i c  energy T related t o  uni t  area of the bas ic  sur
face. I n  t h e  l o c a l  system of rectangular Cartesian coordinates, we have 

(8.12) 


4: Cf . ,  f o r  example, J.Leach, Classical  Mechanics, Chapter IX, IL, 1961. 
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Equation (8.12) i s  applicable t o  an inhomogeneous she l l .  Let us pass t o  
a layered s h e l l ,  put t ing:  

n-I 

k = l  

n-1 

k-I 

n-ll 

where Apk , Ah ,& a r e  t h e  changes i n  p,  A ,  CL on t r ans i t i on  f r o m  the kth l ayer  
t o  the  (k + l\tnlayer ,  n i s  the number of layers ,  uo i s  t h e  un i t  Heaviside 
function, and zl, a r e  t h e  coordinates of the in te r faces  of the  layers .  It /230 
i s  assumed tha t  t i e  layers  a re  para l le l ,  i .e. ,  t h a t  t h e  coordinates z, a r e  con
stants .  

To shorten t h e  formulas we s h a l l  also make use of r e l a t ions  Gf the  form 
of eqs.(8.13a) - ( 8 . 1 3 ~ )  i n  considering t h e  functions p ,  A, P. 

Let us a l so  introduce the  notation: 

and r e t a i n  i n  eqs.(8.5) - (8.6) on ly  t he  terms containing the  fac tors  z. t o  z' 
inclusive. This makessit possible t o  f i n d  T approximately t o  terms With fac
t o r s  of the  order of h . I n  t h i s  case, T Will contain only seventeen var iab le  
f ie lds .  W e  have 
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(8.16a ) 

Substi tuting these equations i n t o  eq.(8.12), and making use of eqs.(8.7), 
(8.1/+), (8.15), we f ind 
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Further, we have 

2rI = 
0r [ T l l % l +  T&t + w 3 3  +2 ('1,E12+ Tl3E13 +w 2 3 ) J  dz. (8.18) 

Confining ourselves t o  the r e l a t ive  accuracy adopted in calculat ing T, and 
making use of eqs.(8.8a) - (8.1Ob), we f ind  

(8.19) 




Here t h e  quant i t ies  6 (d and c i  $’) are connected by  t h e  r e l a t i o n  (8.8b). 

Equations (8.17) and (8.19) complete the  construction of t h e  funct ion L 
f o r  a layered s h e l l  with t he  accuracy adopted by us. A s  a spec ia l  case, these 
equations y i e ld  the  ejrpression of t he  Lagrange funct ion L%,for a homogeneous
(single-layer) s h e l l  i n  the var iab le  f ie lds  se lec ted  by us. 

For a s i n e - l a y e r  she l l ,  eq.(8.15) takes  t h e  f o l l o d n g  form : 

(8.20) 

Using t h i s  notation, we can obta in  2TX- and Z+Fd i r e c t l y  from eqs. (8.17a)
(8.13) and (S .19) ,  but  s ince a l l  this reduces down t o  s u b s t i t u t i n g t h e  oper
a t o r s  &-(f+:-)f o r  A , ( f ) ,  we s h a l l  not write out the  expressions f o r  2 T ? F  and ;?I:*. 

Let us rpturn t o  the problem of the  approximation of the  Lagrange func
t i o n  L by t h e  funct ion L*. 

L e t  us  consider the difference A .  As will b e  ssen from eqs.(6.2) and the  
propert ies  of T, II, W-, E%-, t h i s  difference in t u r n  i s  a Lagrange funct ion 
with the  coef f ic ien ts  

( 8 . Z )  

I f  a funct ion L+F e d s t e d  equal t o  L, then a l l  the  differences 4 ,  and 
thus a l s o  the difference A ,  would vanish. This vanishigg p f  A would mean the  
existence of a single-layer s h e l l  equivalent i n  t h i s  respeht t o  a multi-layer 
shel l .  But we have ava i lab le  only four quan t i t i e s  character iz ing the  proper
t i e s  of the  single-layer s h e l l :  p+, A-%, k-x- and %$. Equating a l l  the  il, t o  /233 
zero, we obtain,  as w i l l  be  seen from eqs.(6.1%) and (6.19), a system of 
twenty-five equations i n  four  udmowns: 

A” (f”) = 0. 
m (8 .22) .  

The System (8.22) i s  inconpatibIe. Consequently, i t  is impossible t o  
cons-i;ruct a homogeneous s h e l l  equivalent t o  a multi-layer shell’*. 

5Je C a r l  speak only of approximate equivalents. 

It i s  w d l  known t h a t  t he re  a r e  severa l  methods of constructing solut ions 

3:- This conclusion was obvhus  i n  advance, since,  i f  the  funct ions L and L* were 
exact ly  equal, and the  external  loads and boundary conditions of a single-layer 
s h e l l  coincided with t h a t  of a multi-layer shel l ,  the  single-layer s h e l l  would 
exact ly  imitate the motion of the  multi-layer she l l .  
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approximately sat isfying a system of incompatible equations. 

Let us applz the  method based on the requirement of minimizing the  sum of  
the squares of 4. Let us consider the  sum i n  the  expanded form, making use 
of eqs.(8.17b), (8.19) and (8.20): 

S O = ~ A ;= [ A , ( ? )  - 2 / ~ p * ] * + [ A ,  (p) --(2/P)2p*]2+ 
1 
2 
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Let us introduce the  notat ion 

To determine the  unknown parameters character iz ing the  homogeneous she l l ,  
l e t  us set  up the  equations: 

From t h e  system of nod inea r  equations (8.25) we determine the  param
eters  GS, !-I*and h*, after which the construction of t he  homogeneous she l l ,  
a p p r o b t e l y  replacing t h e  layered s h e l l ,  W i l l  b e  completed. 

Several remarks must be made on the method proposed here f o r  the  con
s t ruc t ion  of an equivalent homogeneous she l l .  

a. me system of nonlinear equations (8.25) f o r  su f f i c i en t ly  small Ap, ,  
Ah, and &,, obviously has a t  l e a s t  one system of real solutions,  s ince for -A p , ,  Ah, and aiii equal t o  zero, we ob ta in  the  so lu t ion  p s  = pl, A* = A , ,  FLX- 
= c L 1 Y  a;;= h, = 2h. 

b )  The incompatible system of equations (8.22) and t h e  re la ted  func
t i o n  So were coilsidered by us apart from the  d i f fe rence  L - L*. We ce r t a in ly  
had the  r igh t  t o  proceed i n  t h i s  way, bu t  t he  so lu t ion  proposed involves t h e  
i n p l i c i t  assumption t h a t  those functions of the  va r i ab le  f i e l d  i n  the  ex
pression f o r  L - L* whose coef f ic ien ts  a r e  the  differences & on the  left-hand 
s ides  of the incompatible equations (8.22) a l l  have the  same physical s ign i f i 
cance. This i s  undoubtedly the  vulneFable point  of the  method. Evidently, 
ins tead  of the  function So, we should consider t h e  funct ion of a more general  
type : 

s,=SC,A2,, (8.26) 




-- 

where c, i s  the  weight of t h e  term 4' character iz ing t h e  physical s ign i f i 
c a x e  of t he  corresponding term++ i n  the  expression f o r  L - L*-

The p r inc ipa l  d i f f i c u l t y  here l i e s  i n  the  determination of t he  numbers s. 
We s h a l l  first give an  elementary example of the  choice of the  coef f ic ien ts  /235 
s,based on t h e  c l a s s i ca l  theory of she l l s .  

The Kirchtnoff-Love hypotheses lead  t o  t h e  conclusion tha t ,  i n  t h e  Lagrange 
functions L and L++, we may neglect a l l  terms containing var iable  f i e l d s  con
nected with t h e  components e12 of the  s t r a i n  tensor and ei3 of the  s t r e s s  ten
sor. Consequently, i n  eq.(8.26) we should equate t h e  coef f ic ien ts  c, of t h e  
corresponding A, t o  zero. If we p u t t h e  remaining coef f ic ien ts  c, as equal t o  
unity, then we f i n d  

r) 

+[A,( 1:;J-T (2h*)3 2p*h* ] ' + [ A ,  (2p) -(2h*)2p+12+
'A .*+2p * 

.A, (2p) -
2 
1 (2/~.')~2p" A,  (2p) --

3 
1 

( 2 / ~ * ) ~ 2 p ~ *I'. 
I n  cont ras t  t o  eq.(8.23), we introduced the  coef f ic ien t  ;E" i n  ce r t a in  

5erms of eq.(8.27), bearing i n  mind the numerical coef f ic ien ts  of t he  corres
ponding terms i n  the  expressions f o r  2T and Zn. T h i s  again corresponds t o  the  
assumption of t he  same physical s ignif icance of t he  functions of t h e  var iab le  
f i e l d s  f o r  a l l  coef f ic ien ts  of the  form aA,( f )  where a i n  this case equals 
un i ty  o r  two. 

-

3:. C f . ,  f o r  example, V.Ya.Goncharov, Theory of In te rpola t ion  and Approximation 
Functions, O N Z ,  1934, p.161 
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W e  now consider the  case when the  components c,,(O)(i,k = 1,2) vanish on de
formation of t he  she l l .  I n  t h i s  case, we cannot neglect t h e  terms containing 
the  components Ti@ of the stress tensor. 

The determination of the  required parameters, characterizing t h e  proper
t ies  of a homogeneous she l l  approximately equivalent t o  a layered she l l ,  i s  
again reduced t o  the  solution of t he  system of equations: 

(8.28) 

The methods based on t h e  consideration of t h e  sms S, and SI,, defined /236
by eq. (8.27) y ie ld  the  r e su l t  of averaging incompatible val!es of the  required 
unknowns obtained from the system of equations (8.22). 

This r e s u l t  of averaging, as will be seen from t h e  above discussion, per
m i t s  constructing of an equivalent she l l  with rough approximation, since the 
physical meaning of the  quant i t ies  entering i n t o  T and n,  which a r e  f ac to r s  
of 4 ,  d i f f e r  substant ia l ly .  We must therefore consider i n  grea te r  d e t a i l  the  
coeff ic ients  ci of eq.(8.26). 

2. Evaluation of the  ~-~Weights- ci 

We admit t h a t  t he  technique proposed below f o r  evaluating the  weights 
i n  eq.(8.26) i s  qui te  imperfect. However, i t  permits an introduction, i n t o  
the  calculations,  of quant i t ies  approximately characterizing the significance 
and physical propert ies  of various groups of terms entering in to  the  func
t i o n  L - L+F. Here, as before, it i s  necessary t o  r e f ine  the  region of varia
t i o n  of the  var iab le  f i e ld ,  s ince t h i s  region i s  a t  the  same time the  region 
of approximation of the function L by  the function L.Y. 

We s h a l l  assume tha t  t he  s h e l l  undergoes s ta t ionary  vibrat ions a t  a fre
quency w l y i n g  i n  the  in t e rva l  (w, , w, ). The quant i t ies  wI and ur, a r e  assumed 
t o  be known. To determine the  frequency w1 we may use any approximation meth
od, f o r  example the  Ritz method. The upper value of t he  frequency w may be 
selected a r b i t r a r i l y .  We will show the influence of t h i s  choice. Let us as
sume, f o r  instance,  t h a t  the  displacements u, a r e  expressed by t h e  equations 

ui =ui sin w t  

Let us subs t i t u t e  eq. (8.29) i n t o  eqs.(8.1%) and (8.19) and then aver

age the  r e su l t s  over t h e  two-dimensional region (wl, o),; 0, "). L e t  us 
W 

bear i n  mind the equations 



2 x-

0s cos w f  sin w t d t  =0; 

2rr- -	2 x  
w 

0icoszw f  dt  d w  

L e t  us temporarily introduce i n t o  t h e  consideration t h e  var iab le  If,de
fined by the  r e l a t ion  

The var iables  Yf a re  defined by the  values taken by the r a t i o  ( a , f )  : ( f )  
on the basic  surface, where f i s  the general symbol f o r  the  functions charac
te r iz ing  the  s t ress -s t ra in  s t a t e  of the shel l .  Obviously the var iab les  Y f  a r e  
i n  par t icu lar  connected w i t h  t h e  var ia t iona l  ind ices  of the function f (Bibl.5) 

I n  considering spec i f ic  problems on the  v ibra t ions  of layered she l l s ,  we 
can sometimes determine i n  advance the  approximate limits c1 and Q within 
which t h e  values of the var iables  If w i l l  l i e ,  from the  known solut ions of 
similar problems f o r  homogeneous she l l s ,  and then average over Y f  the  differ
ence L - L+ on the  in t e rva l s  ( c l ,  %).  

A s  a r e su l t ,  t he  constants c ( , ) ,  defined by the  equation 

enter the equations. 

Since the quant i t ies  c(,)have a de f in i t e  meaning only f o r  very narrow 
classes  of problems, we s h a l l  below apply various methods permitting t h e i r  
exclusion from the  equations solved. 

L e t  us continue our study of the  var ia t iona l  i n t eg ra l s  of the variable. 
f i e l d s  enter ing i n t o  the  Lagrange functions of homogeneous and layered she l l s ,  
assuming tha t  the  components uJ (j = 1, 2, 3 )  of displacement vary over t he  
in t e rva l s  (-2h, +2h). It i s  wel l  known tha t ,  i f  t h i s  in te rva l  is fu r the r  ex
tended, the l i n e a r  theory becomes unsuitable. 
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The greatest  d i f f i c u l t i e s  a re  connected with ind ica t ing  t h e  var ia t iona l  
i n t e rva l s  of the  quan t i t i e s  BJ;) and T::) (i,k = 1, 2; m = 0, 1, 2). These 
in t e rva l s  depend l a r g e l y  on the  special  propert ies  of the solutions of d e f i n i t e  
c lasses  of boundary problems. We sha l l  s tart  out from the  hypotheses t h a t  
y ie ld  r e su l t s  i n  t h e  general form, admitting of fu r the r  s implif icat ion and con
nected with the  spec ia l  propert ies  of spec i f i c  problems. 

Assume t h a t  t h e  components ci(f) (i,k = 1, 2) of t h e  s t r a i n  tensor vary 
over the in t e rva l  (-a, +a)  where a i s  the  grea tes t  value taken by this quan- /238 
t i t y  (c f .  Sect.2) i n  t h e  various layers. The exceptions a re  the cases i n  which 
we know i n  advance t h a t  t h e  e x '  are small or  zero, when tha t  range of varia
t i o n  contracts t o  a point.  

Assume fur ther  t h a t  the components T!:) of the s t r e s s  tensor vary over 
the  in t e rva l  (-%, +%). If there  i s  reason t o  suppose tha t  the s t ressed s t a t e  
of t he  she l l  i s  a l m o s t  momentless, then the  quant i ty  co must be dettirn:iric:? 
from the  r e l a t ion  

C, =2 ~ , k , , ,  

i n  accordance w i t h  t h e  in t e rva l  of var ia t ion  cik( 0 )  . Here a' i s  the m a x i m u m  
y i e ld  point of the  mater ia ls  of the  layers  and the  greatest  value of the  
pr incipal  curvature of the 'bas ic  surface. 

I n  purely f l exura l  deformations of t he  she l l ,  taking place i n  the  absence 
of loads on i t s  boundary surfaces, the  absolute values of the  components T{!) 

(i= 1, 2, 3 ;  m = 0, 1, 2) are small. I n  t h i s  case, t o  obtain approximate 
solutions,  the  i n t e r v a l  (-cay co) must be contracted t o  a point. 

Assume fur ther  t h a t  a l l  the  nonzero quant i t ies  cf:' ( i ,  4.7 1, 2; m = 1,2) 
vary over the  range [-(-2h)'a, (2h)'aI while the uan t i t i e s  T~~ ( i  = 1, 2, 3; 
m = 1, 2) vary over the in t e rva l  from [-(2h).c,, ?2h)' c(s1 Th i s  i s  equivalent 
t o  the  assumption tha t  t h e  terms ac tua l ly  entering i n t o  t h e  approximation poly
nomials of the  form (8.3) are of the  same r e l a t i v e  order. 

All the above compels the conclusion tha t  weighted quadratic approxima
tions should be introduced a f t e r  su f f i c i en t ly  complete concretization of t he  
content of the  problem of s h e l l  mechanics. 

Let us tu rn  now t o  a consideration of the  special  case of the  determining 
of the  e l a s t i c  constants of the homogeneous she l l ,  approximately equivalent 
t o  a layered she l l .  

3. Application of t he  Weighted Quadratic Approximation 

Let us form the sum S,, assuming tha t  among t h e  terms of the difference 
L - L* ther?  a re  no zeroes and t h a t  an averaging has been made over the above 
in t e rva l s  of var ia t ion  of the  var iable  f i e l d s  and over t h e i r  time der ivat ives  
entering in to  the  composition of t he  k i n e t i c  energy. 



I n  considering t h e  terms i n  2T, which contain der ivat ives  with respect t o  
the  coordinates x i ,  w i t h  a comma i n  the  indices, l e t  us use the var iable  Yf 
according t o  eq.(d), followed by averaging. Thus t h e  f ina l  r e su l t  w i l l  con
t a i n  the  constants ccml, defined by eq.(e). 

Let us introduce the  notation /239 

Now, based on eqs . (8 .1n)  and (8.19), l e t  us form the  sum SI of the 
squares of the  deviations from zero of t he  averaged values of the independent 
summands entering i n t o  the  difference L - L*. 

As before, l e t  us consider the  var iab le  f i e l d s  introduced by us and t h e i r  
der ivat ives  as independent variables. We have 

64 
S, = c,AL =(Aw), 16h" [A, (p) -2/z* p*]' +--/i4c(,)[A,  (p) 9 

[A, (2p) -(2he)(2pL*)I2+16he4a4A, (2p) --1 (2/~*)~-j- a,* 2p3: 
3 

The following short  remarks apply t o  the  sum S,, supplementing t h e  state
ments i n  Subsection 2 of t h i s  Section. 



a )  The sum Sl contains a smaller number of summands than t h e  sum S,, 
since, on averaging over symmetric in te rva ls ,  t he  terms containing odd powers 
of the  var iab le  f i e l d s  w i l l  cancel out. 

b )  As already noted, a t e r m  containing a f a c t o r  c ( ~ ), can receive a def i 
n i t e  meaning o n l y  f o r  d i s t i n c t l y  r e s t r i c t e d  c lasses  of dynamic problems. 

I n  s t a t i c  problems i t  Will not be necessary t o  inves t iga te  the  var iables  
I,,and the  constant cc2) Will not enter  i n t o  the  eq,yations. I n  t h e  remain- /240 
ing  cases an attempt must be made t o  eliminate the  terms with t h e  f a c t o r  cc2) . 
The most general  method of eliminating one of the terms with such a f a c t o r  i s  
t o  choose the  bas i c  surface i n  the  equivalent homogeneous s h e l l  such t h a t  the 
coeff ic ient  W i l l  vanish i f  the  f ac to r  cC2) occurs i n  the  selected term. 

Equation (8.31) contains only one term with the  f ac to r  c t 2 ) .  Let us de
note by h, t h e  z coordinate determining the new pos i t ion  of the  bas ic  surface 
r e l a t ive  t o  the  above-selected surface. To determine h,, l e t  us  s e t  up the  
fol lowing equation resu l t ing  from eq.(8.31) : 

If  eq.(8.31) s t i l l  contains another term with the f a c t o r  cC2), the  posi
t i o n  of the bas ic  surface would a l so  have t o  be changed i n  the  layered she l l .  

C Introduction of the frequencies w1 and cu, shows t h a t  t h e  approximate 
replacement of the layered she l l  by a homogeneous s h e l l  permits inves t iga t ion  
of only a l imited region of the frequency spectrum. The higher frequencies 
cannot be determined by Chis method. 

d)  Equation (8.31) was  obtained under ce r t a in  assumptions, which might 
f a i l  t o  correspond t o  the  physical content of individual  problems. But t he  
form of t h e  r e l a t i o n  (8.31) permits i t s  adaptation t o  a number of spec ia l  
cases. T h i s  has already been mentioned above. 

To supplement t he  above we note t h a t  i n  t h e  case of p la tes ,  the coeff i 
c ien t  QJ must be taken as zero, and f o r  f l a t  s h e l l s  close t o  zero, i n  accord
ance with eqs.(8.30a). These cases approximate the  assumptions under which 
the  sum ,310 was obtained. 

If a plate ,  under ce r t a in  boundary conditions, has no chain s t resses ,  
then the  evaluation of the  var ia t iona l  i n t e r v a l  of the s t r e s s  tensor compon
ents  713 by means of the quantity co defined by the difference (8.30a) l o ses  
i t s  meaning. I n  these  cases, one must start  out from the  spec ia l  conditions 
of loading of t he  boundary surfaces of the she l l .  A t  considerable surface 
dens i t ies  of the load, co may be taken as equal t o  a,, i .e . ,  we may average 
the  s t r e s s  tensor components 'ri3 over t h e i r  na tura l  i n t e rva l .  O f  course, t h i s  
appl ies  a l s o  t o  the  corresponding cases of deformation of she l l s .  

We emphasize i n  conclusion t h a t  t h e  expression obtained by us f o r  the  
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sum S, should be regarded merely a s  an example of the appl icat ion of t he  gen
e r a l  method. I n  solving special  problems one must s t r i v e  toward a preliminary 
individual izat ion of t he  f i e l d  variables, permitting d i f f e ren t  var ia t iona l  in
t e rva l s  t o  be prescribed f o r  them and permitting t h e i r  r e l a t i v e  magnitude t o  be 
estimated, a s  noted above. For this reason, the  f o r d  appl icat ion of 
eq. (8.31) t o  a rb i t r a ry  problems cannot be recommended. L& 

e)  Equation (8.31), as was  assumed, approximately r e f l e c t s  t he  physical 
significance of the individual  terms entering i n t o  the sum S,. 

O f  course i n  a comparative estimate of the magnitudes of t he  individual 
summands of the sum S, one must, as already noted, s t a r t  from the  physical con
t en t  of the  problems of a de f in i t e  class.  This permits an introduction of 
fu r the r  simplifications i n t o  eq.(8.31). Let us consider one version of these 
simplifications,  s t a r t i ng  out from the  bas ic  assumptions made i n  deriving 
eq. (8.31). 

There, we assumed t h a t  the  tangent ia l  components of the  s t r e s s  tensor and 
the s t r a i n  tensor d i f f e r  from zero and tha t  the r e l a t ive  magnitudes of the  
f l exura l  and chain s t r e s ses  a re  the  same. Comparing under these conditions t h e  
expressions containing t h e  operators and &, we f i r s t  of a l l  note tha t  the 
orders of and A2 h- a r e  $he same. Therefore, i n  comparing terms contain
ing ;& and &, the fac tor  h must be a t t r i bu ted  t o  the t e rps  containing &. 
Then, we note t h a t  t h e  order of the r a t i o  & : p1 equals a )' . Finally, 
we must bear i n  mind the numerical coeff ic ients  of the  summands entering i n t o  
the  sum S,. 

We mentioned above t h a t  the terms containing the  fac tor  cCz)  had t o  be ex
cluded from the equations by various methods, f o r  example, by a r a t i o n a l  choice 
of the  basic  surface i n  the layered s h e l l  and i n  the approximately equivalent 
homoqeneous she l l .  Here, however, we s h a l l  not change the  posi t ion of the  
bas ic  surface, but s h a l l  d i r ec t ly  equate t o  zero the coeff ic ient  of ccz)  i n  
eq.(8.31). Then, re ta in ing  the  dominant terms i n  S, (under the  above assump
t ions) ,  we f ind the following simplified expression f o r  the  sum S,: 

A s  dl1be seen from the  simplified expression f o r  S , ,  t he  t e r m s  depending 
on the chain s t r e s ses  have been dropped from it .  This i s  a consequence of the  
assumptions we made on tne region of approximation and the neglect of a number 
of terms entering i n t o  eq.(8.31). It i s  clear  t h a t  t he  r e su l t s  obtained from 
eq. (8.33) a r e  only roughly approximate. 

For S ,  t o  vanish i t  is  suff ic ient  t o  equate t o  zero t h e  expressions i n  t h e  
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brackets. Also bearing i n  mind tne condition f o r  the vanishing of the  coeffi
c ien t  of c ( ~ )i n  the right-hand s ide of eq.(8.31), we f ind  the  following /a2
simultaneous system of equations: 

2h* P* =A, (PI, 

1 
-
3 

(2/1"j3 p* =A (p), 

1 
y (2h*)32p* = A ,  (2p), (8.344 

Hence, we f ind 

Of cm.rse, i f  cl-x and A% a r e  determined by eqs.(8.35b)-(8.35~), we may i n  
special  cases obtain llphysically impossible1! values of the Poisson constant V ,  

which may above a l l  indicate  the  unsui tab i l i ty  of t he  simplified expres
s ion  (8.33)- f o r  t he  sum s,. 

Here, we will not invest igate  the question as t o  the  impossibi l i ty  of de
termining t h e  parameters of t he  homogeneous s h e l l  from eq.(8.31). 

W e  s h a l l  l ikewise not inves t iga te  i n  d e t a i l  the  question whether i t  i s  
permissible t o  formally apply the  equations w i t h  llphysically impossible1' values 
of Poissonfs constants and the  physical meaning of such equations. We r e c a l l  
merely t h a t  negative values of Poissonfs constant correspond t o  the  loss of 
s t a b i l i t y  of t he  s h e l l  considered i n  Sect.6. The ttphysically impossiblet1 values 
of Poisson's constant fo r  ac tua l  materials may prove t o  be possible f o r  a / a 3
medium approximately equivalent t o  the  r e a l  medium, and may r e f l e c t  t he  specif
i c  pecu l i a r i t i e s  of those problems of mechanics f o r  which this medium has  been 
constructed . 

f >  Let us consider an example of application of eqs.(8.35a)-(8.35~)*. Let 
a bimetal s h e l l  of thickness 2h consis t  of a layer  of aluminum of 2/3h,adjacent 

*This example i s  merely of an i l l u s t r a t i v e  value. 
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4t o  the  bas ic  surface, and a layer  of d u r a l u m i n 4  i n3 
thickness. Required, t o  f ind  a*,p", A* and I.L>?. 
Table 6 gives the pr inc ipa l  physical charac te r i s t ics  
of aluminum and duralumin. 

From eq.(8.15) we have: 

40,267-10-' +-0,12-10-3 (2h) =0,283*10-'(2h),
3 

260,267- -
81 

. O,I2. IO-' (2h)3=0,929- (2h)3, 

A 2  (2p)=(; - 0,521~lOG-/--0,O14~1OG26 (2h)3=0,178-10G( 2 / ~ ) ~ ,
81 

=0,763.105 ( 2 4 3 .  

Making use of eqs.(8.35a)-(8.35~), we f ind  

2p* 0.544. loGbar; h* =0,408. IOG bar 

These r e s u l t s  show i n  par t icu lar  t h a t  t h e  values 
I4 of the  e l a s t i c  constants A* and p* found here Will dea 
n pend on the density of t he  layer  material. 
4-

Comparing the  obtained values of ;?I* and A* /;1wc
with those f o r  ;S. and h given i n  Table 6, we see that 
they cannot be termed "averaged", since they a r e  out
s ide t h e  var ia t iona l  limits of and h i n  t he  ma
t e r i a l  layers. Obviously, t h i s  i s  primarily a conse
quence of the  method of determination adopted here f o r  
the reduced thickness of the  homogeneous she l l ,  2h*. 
This thickness was  found t o  be somewhat l e s s  than the 
thickness 2h of the  layered shel l .  Besides, t he  ex
clusion of t h e  terms depending on the  chain s t r e s ses  
a l so  had a considerable influence. 

L e t  us consider a simpler s t a t i c  problem. Of the  
system of equations (8.34a)-(8.34d) the re  remain 
eqs.(8.34~)-(8.34d). Putting 2h* = 21,we f i n d  
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- I 

From eqs.(8.36) and t h e  da ta  i n  Table 6, we f i n d  

2p* zz0,535-lo6 Bar; i* GZ 0,392. IOG bar. 

where the  values of &)t. and h* do not go beyond the  limits o t h e  var,ational 
interval  of 3 and h f o r  layer materials almost coinciding with t h e  values 
of these quant i t ies  f o r  duralumin, owing t o  t h e  f a c t  t h a t  the  duralumin layer  
occupies 2/3 of the  thickness of the  s h e l l  and t h a t  there  a r e  no terms depend
ing  on i n  the  approximate expression (8.33). 

g )  We remarked repeatedly t h a t  i t  i s  poss ib le  t o  simplify t h e  sum S, by a 
r a t iona l  choice of the  bas ic  surface i n  t h e  layered s h e l l  and i n  t h e  equiva
l e n t  she l l .  We may, f o r  example, s e l ec t  t he  bas i c  surface i n  spec ia l  cases 
such t h a t  t h e  components E#) (i,k = 1, 2) on i t  s h a l l  vanish.:-. This choice 
of the  bas i c  surface, however, i s  mandatory i n  solving s t a t i c  problems, since 
i n  dynamic problems one must first eliminate t h e  terms with the  coef f ic ien ts  
c ( , ) ,  whose meaning i s  not su f f i c i en t ly  d e f i n i t e  i n  the  general case. 

h) It i s  easy t o  e s t ab l i sh  t h a t  t h e  approximate expression (8.33) f o r  
t he  sum S, i s  a l s o  su i t ab le  i f  t he  quant i t ies  E i k  (i,k = 1, 2) vanish, since 
this expression does not contain terms depending on E::’ . O f  course, i f  the  
components E$:) vanish, t he  accuracy of eq.(8.33) and of the  r e su l t an t  con- /245 
sequences increases.  

i) I n  the  general  case, t he  quant i t ies  A s ,  P*, p+*, 2hX- are determined 
from the  conditions t h a t  t h e  right-hand s ide of eq.(8.31) s h a l l  be  minimum, 
i.e., from the  conditions: 

asdS,- aG* 
as, -0; I -00; ~--0; --

ah* 
-0, (8.37)

arrt* aH* 

where 

The conditions (8.37) must be  associated with the  condition (8.32) t h a t  

$5 SugPestions as t o  the  r a t i o n a l  choice of the  bas ic  surface are given else
where rBib1.15a, b, 21, 25). 



the  coef f ic ien t  of cc2) s h a l l  vanish i n  eq.(8.31). 

The system of a lgebraic  equations (8.32) and (8.37) i s  nonlinear i n  t he  
required quant i t ies  m++, G+:C, H;C, h*, and hl. Its so lu t ion  c l ea r ly  involves 
considerable d i f f i c u l t i e s .  We may, f o r  example, use the  method of successive 
approximation, subs t i tu t ing  i n  t h e  second-power t e r m s  of eqs. (8.32) and (8.37) 
the  solut ions (8.35a) - (8 .35~)of the  simplified system and determining t h e  
next approximation, but  i n  t h i s  case there  can be no guarantee t h a t  the  pro
cess will converge. Such ca lcu la t ions  would be outside the  scope of this book. 

4. 	 Application of Boundary-Problem Solutjons of the  Dynamics of Homopen
eous Shel l s  t o  the  Construction o f-a - .Homogeneous Shel l  Approximately 
Equivalent t o  a Layered S h e l l  

A s  can be seen from t h e  above, t he  pr inc ipa l  d i f f i c u l t y  i n  solving t h e  
problem of t h e  approximation of t h e  Lagrange funct ion L of a layered s h e l l  by 
a Lagrange funct ion L++of a homogeneous s h e l l  l i e s  i n  the  indeterminacy of t he  
var ia t iona l  limits of the  var iab les  of the f i e l d .  This indeterminateness 
forces us i n  many cases t o  consider the approximation over Itnaturaltt in te rva ls ,  
determined by the  requirement of the  app l i cab i l i t y  of t he  l a w s  of e l a s t i c i t y  
theory. Clearly, t he  introduct ion of the na tura l  i n t e rva l s  of approximation 
reduces t h e  accuracy of t he  results. 

The continuous f i e l d  var iab les  introduced by us y ie ld  s t i l l  another method 
of constructing a homogeneous s h e l l  approximately equal t o  a layered s h e l l  
which i s  f r e e  from the above handicap. 

Let us assume t h a t  we have solved a ce r t a in  dynamic boundary problem of 
the  theory of homogeneous she l l s ,  approximately corresponding i n  boundary con
d i t i ons  and i n  loading conditions t o  the problem of vibrat ions of a layered 
s h e l l .  We s h a l l  assume t h a t  i n  the  i n i t i a l  approximation the  va r i ab le  f i e l d s  
are determined from t h e  so lu t ion  of the  problem for t h e  homogeneous she l l .  

Applying t h e  formula of transformation of t he  components of tensor  quan
t i t i e s ,  we f ind  according t o  eqs.(8.17b) - (8.19) t h e  approximate expression 
f o r  t he  Lagrange function L f o r  the  layered s h e l l  with var iab le  coeffic- / a 6
i e n t s  f o r  t h e  operators & ( f )  which a re  functions of the  coordinates of t he  
bas ic  surf ace. 

The problem of determining t h e  parameters A+, W-, p++, h*, and the  coordi
nates of t h e  new bas ic  surfaces  i n  the  layered Eznd homogeneous s h e l l s  reduce.s 
t o  a consideration of t he  mini"  standard deviat ion 

where the i n t e r n a l  i n t e g r a l  extends over the area S of the bas ic  surfaces, 
common t o  t h e  layered s h e l l  and i t s  equivalent homogeneous she l l .  The meaning 
of t h e  remaining notation has been indicated above. The question again reduces 
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t o  the solut ion of a system of nonlinear a lgebraic  equations: 

(8.39) 

Selecting t h e  new basic  surfaces i n  the layered s h e l l  and i t s  approxi
mately equivarent homogeneous she l l ,  we can exclude from the in t eg ra l  I the  two 
dominatillg terms, and then s e t  up eqs.(8.39). 

Let us consider two elementary problems on the  equilibrium of a c i rcu lar  
closed cyl indrical  s h e l l  of radius R, t o  i l l u s t r a t e  t h e  l a t t e r  method. 

A s  t h e . f i r s t  example, l e t  us consider the  subc r i t i ca l  &symmetric de
formation of t h i s  s h e l l  due t o  the  longitudinal compressive forces T uniformly 
dis t r ibuted over t he  l i n e s  of in te rsec t ion  of the  middle and face surfaces. We 
s h a l l  assume t h a t  t h e  boundary conditions do not prevent radial d i l a t a t i o n  of 
the  tube. 

Confining ourselves t o  the  approximation formulas of the  c l a s s i ca l  theory 
of she l l s  and t o  the  notations given i n  Sect.6, we f ind  (Bib1.23d) t h a t  t h e  de
formed s t a t e  of the she l l  i s  determined here by only a s ingle  function du 
From the condition tha t  the  annular forces s h a l l  vanish, we obtain dx* 

duWe r e c a l l  t h a t  w and - belong t o  the  f i e l d  variables.  We therefore  ,
dx 

assume tha t  these quant i t ies  a re  the  same i n  the  layered and homogeneous 
shel ls .  

For metals such as s t e e l  or aluminum, the  Poisson constant d i f f e r s  m 
l i t t l e  from 0 . 3 .  Let us put v = 0.3 i n  eq.(8.40). 

I n  the  second elementary problem, l e t  us assume t h a t  t he  longi tudinal  
forces are  zero. Then, with the  other boundary conditions a rb i t ra ry ,  we f ind 
t h a t  the deformed s t a t e  of the s h e l l  i s  described by the  function w. Yere, 

Since eq.(8.19) i s  s e t  up i n  a l o c a l  Cartesian system of coordinates, l e t  us 
consider t he  formulas f o r  the  d i r ec t  and inverse t r ans i t i ons  between the in
t e rna l  coordinates of the s h e l l  and the loca l  Cartesian system. These formu
l a s  a re  of the following form: 

X ,  =x - x,; x2 = ( R  -z)  sin ~ 

s-so ; x , = R - ( ( R - Z ) C O S - - - - - - ,  s--o. 

R R 
(8.42a) 



x' =x =x* + x,; xz =s =so+ R t a n - lx,;R - ~3 

where xi a r e  the l o c a l  Cartesian coordinates and x? t he  in t e rna l  coordinates 
of t he  she l l .  I n  this case, the  in t e rna lcoord ina te sa re  determined by 
eqs.(6.1). The coordinates xi, and determine the pos i t ion  of the or ig in  of 
the  coordinate bases of the  l o c a l  Cartesian system on t h e  middle surface of 
the  shel l .  # 

Making use of eqs.(I ,  5.17), l e t  us express the  displacement vector com
ponents i n  the l o c a l  Cartesian system of coordinates i n  terms of the  compon
ents  u and w. We obtain 

( 8 . 4 2 ~ )  

On t h e  bas i s  of eqs.(8.L2b) - (8.L2c) and put t ing  x = & and s = after 
d i f f e ren t i a t ion ,  we f ind  a l l  the quant i t ies  character iz ing the axisymmetric 
s t ress -s t ra in  s t a t e  of the  s h e l l  entering i n t o  eq. (8.19). 

Since eqs.(8.40) - (8.41) were obtained from the  c l a s s i ca l  theory of 
she l l s ,  we must make use of them i n  determining t h e  quant i t ies  e{:) . We obtain 

Fur ther ,  on the  bas i s  of the  Kirchhoff-Love hypotheses, we put /248 

$1 =0 

( i = l ,  2, 3; m=o, 1, 2). 


Of course, i t  i s  a l s o  possible  t o  use equations t h a t  do not r e l y  on the 
Kirchhoff-Love hypotheses, but  t h e  i l l u s t r a t i v e  character  of the  examples con
sidered here and t h e  general object  of constructing an  approximate so lu t ion  do 
not j u s t i f y  the  complications which these methods would involve. 

Let us consider the f irst  elementary problem. I n  &symmetric compres
s ion of a cy l indr ica l  s h e l l  under the conditions of f r e e  r ad ia l  d i l a t a t ion ,  the  



flexural moments a r e  zero, so  t h a t  t h e  de r iva t ive  	fi a l s o  vanishes. From 
dx2 

eqs.(8.63a) and (8.1+0) it follows t h a t  

Making use of eq.(8.19> and noting tha t ,  i n  s t a t i c  problems, t he  Lagrange 
function L equals -n, we f i n d  

Here, i t  has  been assumed t h a t  h* = h. If  we a l s o  assume t h a t  v ? 0.3, 

then i -%Z 	2 ~ 3 6 .  This  permits us t o  f i n d  p+f, by equating t o  zero the expres2 

sion i n  t h e  braces i n  eq.(8.45)7y. The equation determining w i l l  be l i n - /249 
ear. The r e s u l t  will not depend on the  function u. Rejecting t h e  terms t h a t  
depend on the r a t i o  2h : R and approximately s e t t i n g  t h e  f ac to r  (1- v)" as 
equal t o  0.5, we f i n d  

3; I n  this case I reaches i t s  exact lower boundary. 

250 



IF 

The methods of fu r the r  refinement i n  this case a r e  so  obvious t h a t  we 
s h a l l  not discuss  them here. Equation ( 8 . 4 6 )  determines ~ $ 6by means of a n  op
era t ion  close t o  a simple averaging of the  e l a s t i c  constant of t he  l aye r s  over 
the thickness of the she l l .  

Consider t he  second elementary case. Making use of eqs.(III ,  10.la) 
(111, 10.3a), and (8.43a), we f ind 

Here we  confined ourselves t o  the  approximations corresponding t o  the  
Kirchhoff-Love hypotheses. From eqs.(8.19) and (8.38) we f i n d  

- (2h) ( 1  +v2)+-R' [  A, (2p)--
2 
1 

(2h)ZZp"I+-2A,  (2p) -

Here, as above, we have assumed t h a t  hz- = h. 



I 

If we put W $ z  0.3 and, consequently, A3c 
- 3-2 IJ.*,= and a l s o  neglect t h e  1250 

t e r m s  containing the  r a t i o  w : R, then  we f i n d  from eq.(8.48), on equating I 
t o  zero, 

We omit a comparison of the  numerical values of IJ.4:- determined from 
eqs.(8.h8) and (8./+9). 

Tne determination of p+:-on the  b a s i s  of eq.(8.48) can be fu r the r  ref ined 
by assuming, f o r  example, tha t  w i s  expressed by 

t nww=A,sin
1 

and, consequently, t h a t  

252 




Equating I t o  zero and taking vJ+ = 0.3, we f i n d  p;: as a funct ion of the 
r a t i o  m : 4. A t  high values of m we again arr ive a t  eq. (8.49). 

Section 9. 	 Construction of the  Approximate Solut ion t o  Problems of t h e  . /251
Dynamics of Layered Shel ls .  Application of the  Method of Per
turbat ions and Nonremovable Errors 

An analysis of the  problem of t he  approximate replacement of a layered 
s h e l l  by a homogeneous s h e l l  shows t h a t  t h i s  leads t o  considerable d i f f i cu l 
t i e s .  The major d i f f i c u l t y  i s  t h e  absence of means permitt ing us t o  es tab l i sh  
the  universal region of approximation of the  Lagrange function L of t h e  layered 
s h e l l  by the  Lagrange funct ion L+: of the homogeneous she l l ,  which frequent ly  
forces  us t o  t u r n  t o  the  h a t u r a l l l  region of approximation determined by the  
requirement t h a t  a l l  quant i t ies  s h a l l  vary within t h e  region of app l i cab i l i t y  
of the  l i n e a r  theory of e l a s t i c i t y .  

The absence of ind iv idua l iza t ion  of t he  va r i a t iona l  i n t e rva l s  of t he  prin
c ipa l  var iab les  may decrease t h e  accuracy of t he  results, pa r t i cu la r ly  when 
special  problems are being considered. Even the  absence of individual izat ion 
of the va r i a t iona l  regions of t he  var iables  m u s t  be considered as a preliminary 
hypothesis on the  s t ressed s ta te  of the  she l l ,  which we have emphasized i n  our 
der ivat ion of eqs.(8.31), (8.33) and of formulas (8.35a) - (8.36). For this 
reason, the method indicated i n  Sect.8.4 i s  tne  most j u s t i f i e d .  This method 
i s  based on a preliminary consideration of t h e  so lu t ions  of concrete boundary 
problems, although i n  a number of cases t h i s  method may lead t o  unwieldy cal
culations,  spec i f i ca l ly  i n  the  so lu t ion  of systems of nonlinear a lgebraic  equa
tions,  as noted above. 

Let us consider now the  general  order of t he  approximate so lu t ion  of  prob
l e m s  of the  dynamics of layered she l l s .  

The f i r s t  s tage of t h e  so lu t ion  consis ts  i n  t h e  construction of a homo
ceneous s h e l l  approximately equivalent t o  the layered she l l .  Here i t  i s  most 
expedient t o  start from the  so lu t ion  of the  boundary problem f o r  the  homogen
eous she l l .  This boundary problem should be s o  se lec ted  tha t ,  f o r  t he  pre
scribed loads and boundary conditions, i t  s h a l l  exac t ly  or approximately cor
respond t o  the  problem of the  dynamics of t he  layered she l l .  Then we must use 
the  technique given i n  Sect.8.4 f o r  determining t h e  quant i t ies  character iz ing 
the  homogeneous shel l .  

If t h i s  method involves unnecessary d i f f i c u l t i e s ,  we must use the  pro
cedure indicated i n  Sect.8.3. I n  determining t h e  va r i a t iona l  i n t e r v a l s  of t he  
f i e l d  var iables ,  we must a l s o  attempt t o  match these  and all other  assumptions, 
necessary f o r  der iving a weighted sum of the  form of eq.(8.31), with t h e  con
d i t i ons  of t h e  concrete problem of mechanics. Obviously, the  f i r s t  s tage of 
solut ion of t h e  problem has p r a c t i c a l  meaning only i f  t h e  difference between 
the  values of t h e  physical constants of t he  l aye r  materials i s  substant ia l .  If 
these differences are s l igh t ,  we may confine ourselves t o  the  weighted averag
ing  of t he  physical  constants over the  thickness of t he  shel l ,  taking t h e  
weights equal t o  t h e  thicknesses of the  corresponding she l l s .  However, our 
analysis  shows t h a t  such a method of determining t h e  physical constants, /252 * 
w h i l e  quite l o g i c a l  a t  first glance, does not correspond t o  the  optimum quad
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r a t i c  approximation D f  the  funct ion L by t h e  funct ion L*. 

The f i rs t  s tage of the  approximate solut ion i s  completed by determining, 
from the so lu t ion  of the  boundary problem, the  f i e l d  var iables  i n  the  homogen
eous she l l .  These var iables ,  as noted a t  t h e  beginning of Sect.8, approximate
l y  represent t h e  f i e l d  var iables  of the layered she l l .  Then, using these  f i e l d  
variables,  we construct t h e  f i e l d s  of displacements, s t ra ins ,  and s t r e s s e s  i n  
t h e  layered s h e l l  according t o  eqs.(8.3) - (8.1ob). I n  this case, we must 
first e s t ab l i sh  the  r e l a t i o n  between the  coordinate z+t i n  t h e  homogeneous s h e l l  
and the  coordinate z i n  t he  layered shel l .  This r e l a t i o n  may be  taken i n  the  
following form : 

Equation (9.1) i s  not connected with t h e  equations of motion nor with the 
boundary conditions. This equation w a s  taken a r b i t r a r i l y  by us, as the  simp
l e s t  form of the  r e l a t ion  between z and 2 9 .  We may evidently make use of t h i s  
a rb i t r a r ines s  t o  improve the approximate solut ions sought. We will not fur ther  
invest iFate  t h i s  question here. 

The construction of the  f i e l d s  of the pr inc ipa l  tensor quant i t ies  com
p le t e s  the second sta5e of the  approximate so lu t ion  of the problem of the  dy
namics of layered she l l s .  

We r e c a l l  t h a t  the  solut ion under consideration i s  based on an approxima
t i o n  involving a f i n i t e  segment of the frequency spectrum. By enlarging t h i s  
segment, we increase  the  ltweightlt of the terms depending on t h e  k i n e t i c  energy, 
as i s  shown f o r  example, by eq.(8.31>, and thus worsm the approximation of t he  
quant i t ies  depending on the  po ten t i a l  energy. These quant i t ies  are the  compon
ents  o f  the  s t r a i n  and s t r e s s  tensors.  T'nus, t he  approximate so lu t ion  con
structed by us, as was  t o  be expected, Will have o n l y  l imited value. 

Let us r e f ine  the meaning of t he  approximate so lu t ion  considered here, by 
comparing i t  with the  exact so lu t ion  of the l i n e a r  theory of e l a s t i c i t y .  

Assume, for defirdteness,  t h a t  the  problem f o r  the  approximately eqdva
l e n t  homogeqeous s h e l l  has been solved by the  f irst  method of reduction con
sidered i n  Chapter 111, i.e. ,  by the  method of expansion i n  tensor s e r i e s  i n  
powers of z. Then, i n  the  homogeneous shel l ,  the  conditions on the  boundary 
surfaces will b e  s a t i s f i e d  as w e l l  as the r e l a t ions  expressing Hookels l a w  and 
Saint-Venant's compatibil i ty conditions. The equations of motion and the equa
t ions  of the  contour surfaces will be  approximately satisfied.  The r e l a t i v e  
accuracy of s a t i s f ac t ion  of t he  boundary conditions on the contour surfaces 
will be  lower than the r e l a t i v e  accuracy of representat ion of t he  components 
of t h e  displacement vector and of the  s t r a i n  tensor  by the  segments of the /253 
tensor se r ies .  

The f i e l d s  of displacements and s t r e s ses  i n  t h e  layered she l l s ,  construct-
* 	 ed i n  the  second stage, satisfy the  conditions on t h e  boundary surfaces,  the  

conditions on the  in te r faces  between the  layers ,  the equations r e su l t i ng  from 
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t he  generalized Hooke's law,  and Saint-Venant's compatibil i ty conditions. The 
equations of motion and the  boundary conditions on the  contour surfaces are 
approximately satisfied.  The e r ro r  i n  t he  sa t i s f ac t ion  of t he  equations of 
motion and of the  conditions on the  contour surfaces dl1 depend, i n  t h i s  case, 
not on ly  on the  re jec ted  terms of t he  series representing t h e  displacement vec
t o r  components, bu t  a l s o  on the  differences between t h e  physical constants of 
t he  layer materials and on the  difference between the  thickness of the layered 
s h e l l  2h and the  thickness of the  equivalent s h e l l  2h+:-. 

T'le e r ro r  can be decreased by applying the method of pertuybations. I n  
f a c t ,  knowing approximately the s t r e s ses  on the boundaries of the layers ,  we 
,can now consider separately the  motion of each layer .  Each or' the  l aye r s  per
forms a motion under t h e  ac t ion  of loads on the surface and of quasi-body 
forces ,  which can be found by subs t i tu t in?  t h e  approximately determined com
ponents of the  displacement vector i n t o  the  equations of motion (11, 5.5a 
or 5.5b). 

We can then apply one of the  systems of equations of motion of homogen
eous she l l s ,  considered i n  Chapter 111, t o  each layer  separately.  This dl1 
permit t o  eliminate p a r t  of the e r ro r  a r i s ing  as a result of the differences 
between the quant i t ies  h, P ,  h ,  P. i n  the  1ayeTs of the s h e l l  and the quanti
t i e s  h+:, p+, A+:-, pi': i n  t h e  homogeneous she l l .  There s t i l l  remains, however, 
t he  e r ror  depending on the  approximate determination of t he  surface forces  on 
%heboundaries of the  l aye r s  of t h i s  she l l .  T h i s  e r r o r  i s  connected with the  
f a c t  t h a t  the  funct ion L+ only approximately represents  t he  function L. For 
this reason, the "exact1' subdivision of the gener.al problem of motion of a 
layered s h e l l  i n t o  i so l a t ed  problems of motion of i t s  layers cannot be car r ied  
out,  and the l a t t e r  e r ro r  w i l l  be  irremovable. 

Further s tudies ,  going beyond the  scope of t h i s  book, must obviously ten
t e r  on the search f o r  means of decreasing t h i s  irremovable error .  

Section 10. 	 Application of Optimum Quadratic Approximations t o  the Problem 
of Reduction of the  Three-Dimensional Problem of the  Elasticit ;y 
Theory t o  the  Two-Dimensional Problem 

The methods used by us  i n  so lv ing  t h e  problem of constructing a system 
which, according t o  some cr i te r ion ,  i s  approximately equivalent t o  the  pre
scr ibed system are a l s o  applicable t o  the  problems considered i n  Chapter 111. 
W e  have s t a t ed  above t h a t  t h e  reduction of the  three-dimensional problem of 
t h e  theory of e l a s t i c i t y  t o  a two-dimensional problem of the  theory of s h e l l s  
can be regarded as t h e  construction of a system approximately equivalent t o  /254 
a three-dimensional e l a s t i c  body. The objects of the  above-selected approxi
mation w e r e  t h e  po ten t i a l  s t r a i n  energy and t'le Lagrange function of t he  elas
t i c  body, using systems of var iables  t h a t  y i e ld  the  e x p l i c i t  ana ly t ic  expres
s ions  of the  approximated and approximating functions.  

Tne var iab les  used previously are unsuitable f o r  so lu t ion  of t h e  reduction 
problem. This forces  us t o  abandon t h e  poten t ia l  s t r a i n  energy and the  La-
grange funct ion of an e l a s t i c  body as objects  of approximation. As t h e  objects  
of $he approximations, l e t  us s e l ec t  prescribed body and surface forces  and pre
scribed displacements on ce r t a in  port ions of the  surface of t h e  body. 
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We s h a l l  confine ourselves t o  a discussion of t h e  general  p r inc ip les  of 
t h e  proposed method and not go i n t o  t h e  details. W e  W i l l  s tar t  from t h e  non
l i n e a r  Lam6 equations i n  the form of (11, 7.6), assuming f o r  s implici ty  t h a t  
the  system of coordinate axes of t he  undeformed bas i c  surface of the  s h e l l  co
inc ides  with i t s  l i n e s  of curvature. 

Let us se l ec t  two coordinate l i n e s  as t h e  l i n e s  of o r i g i n  of t he  coordi
nate  net. We s h a l l  def ine the  pos i t ion  of an a r b i t r a r y  poin t  M on the bas ic  
surface by i t s  a r c  coordinates s i ,  equal t o  t h e  absolute  values of the  d i s - ,  
tances of the  point  M from the l i n e s  of or igin.  These dis tances  are measured 
along the  coordinate l i n e s  passing through t h e  point  M from point  M t o  points  
N, of t h e i r  i n t e r sec t ion  With the o r ig in  l i n e s  of the  coordinate net*. The si 
coordinates are connected with the  XJ coordinates by means of curvi l inear  in
t eg ra l s  taken along the  coordinate axes. 

2 


(10.1) 


(do not sum over i t ) .  With a coordinate system se lec ted  i n  t h i s  manner, the 
metric tensor on the  bas ic  surface W i l l  have the following components: 

(10.2) 


where 6: i s  the  Kronecker de l t a .  

It follows from eq.(II, 7.6) t ha t ,  i n  t h e  system of coordinates selected 
by us, the  covariant components of t he  body forces  may be represented i n  the 
following form : 

I n  eqs.(l0.3), MPrr(sJ,  z )  and q . l ( s J ,  z )  are functions of t he  coor
dinates  sJ of the  undktormed bas ic  surface and of t he  coordinate z, depending 
on the  Chr is tof fe l  symbols ril, and on t h e i r  f i r s t  der iva t ives  with respect  
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t o  si and z ( j  = 1, 2). 

The functions @ i  are components of the  addi t iona l  body forces  considered 
i n  (11, Sect.7). These functions, as r e s u l t s  from (11, 7.4),  have the  follow-

-

X- For de t a i l s ,  see  (Bibl.6, pp.101-102). 
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i n g  composition: 

(10.4) 


Here, all ind ices  except j take the  values 1, 2, 3 .  We s h a l l  not wr i t e  out t he  
expressions for these functions i n  expanded form, s ince we intend hereaf te r  t o  
confige ourselves o n l y  t o  a discussion of t he  general  p r inc ip les  of construct
i n g  t h e  system of equations of t h e  theory of she l l s  by means of the  method 
considered here. I n  exact ly  the  same manner, we can der ive the components of 
the  surface forces  on the  boundary surfaces  of the  s h e l l  and on i t s  contour 
surf aces. 

Before considering tne conditions on the  boundary surfaces,  l e t  us assume 
t h a t  t he  surface forces  act ing on them and the stress tensor  components cor
responding t o  them have undergone p a r a l l e l  displacement t o  the  bas ic  surface 
i n  the  sense of Levi-Civita. Making use of (11, 8.13) we f i nd  t h a t  the follow
i n 2  conditions are s a t i s f i e d  on the  boundary surfaces of the shell: 

where t h e  s ca l a r  $o i s  determined from (11, 8.12); the s t r a s s  tensor compon
en t s  displaced t o  the  bas i c  surface a r e  dsnoted as i n  Chapter 111; t h e  s ign  (+)  
corresponds t o  a bourldary surface on. which the  d i r ec t ion  of the  u n i t  vector  
of the  external  normal coincides with the  d i rec t ion  of the  vector  & on the  
undeformed bas ic  surface,  while the s ign  (-) corresponds t o  a boundary surface 
on which these d i rec t ions  are opposite. 

I n  eqs.(l0.5) the  coordirlate z has a f ixed value. Let 

T!iese equations determine the  pos i t ion  of the boundary surfaces f o r  a 
prescribed pos i t ion  g f  the  bas ic  surface wit’hin t h e  she l l .  We s h a l l  hereaf ter  
assume t h a t  hl and h2 a r e  constants. On the  contour surfaces,  the follow-in.3 
r e l a t ions  are s a t i s f i e d :  

The stress tensor  components are connected with the displacement /256 
vector components by the  equations resu l t ing  from Yooke’s l a w  (11, 4.3): 
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where the functions Lyi J , LYi3, L:33 are expressed i n  terms of the  Chr is tof fe l  
symbols rp, j ,  rYi3, The functions G i  , and 933 a r e  nonlinear i n  t h e  
displacement vector  components and t h e i r  derivatives with respect t o  t h e  co
ordinates sJ and z of terms enter ing i n t o  Hooke's l a w  (11, 4.3) whose composi-
Lion may be established, f o r  instance,  from eq.(II ,  7.2). These funct ions 
have a similar meaning i n  the  case of physical  nonlinearity,  i.e., of a Hookers 
l a w  determined by (11, L . 7 ) .  

Sect ion 11. 	 Approximate Zxpressions of t he  Displacement Vector Components 
and the  Equations of Motion of the  Shell 

Let us assume t h a t  t he  displacement vector  components, displaced t o  t h e  
bas ic  surface, can be  represented by approximation formulas similar to . those  
considered i n  Chapter 111. 

N 

(11.1) 

m-:O 

where c& ( 2 )  a r e  prescribed functions (above, we mostly used cpm ( z )  = 
m! ) 

while the  coef f ic ien ts  uj") are unknown funct ions t 3  be determined. 

Tie right-hand s ide  of eq . ( l l . l )  contains a f i n i t e  sum such that, here as 
above, the number of degrees of freedom of the  s h e l l  i n  t he  d i r ec t ion  of t he  
coordinate x3 = z i s  r e s t r i c t ed .  Subst i tut ing eqs . ( l l . l )  i n t o  eq.(10.3), we 
f ind  the f o l l o w b g  approximate expressions f o r  t he  components of the body 
forces  : 



The functions Yi and Y3 are the  r e s u l t s  of subst i tut ion,  i n t o  the  funct ions ;i 
and +3,'of t h e  appro,dmate eqs.(ll.l) f'or t'?c displacement vect.3r conponents.If 
we confine ourselves t o  studying weakly nonlinear problems, then the  func
t i o n s  Y t  and Y3 W i l l  be  polynomials of t he  functions cpPmand t h e i r  der ivat ives .  

L e t  us now consider t he  approximate expressions f o r  the surface forces  
on the  boundary surfaces  of the  she l l .  Ikkirlg use of eqs.(l0.5) and (10.8a) 
(10.8c), we obtain 

N 

1 

i =f {'Pm(z('-1) [pdi l p  +L 5 3  (si, z( 1) I&*'] + 
m =O 

+pq7;n (+)) up)+ 'Vi3 (si,z '+ ) ,d k U W ,  It;"); (11. ja)P 

The quant i t ies  z (*) are determined from eqs. (10.6). The fu_rlctions 

contain t h e  se t  of nonlinear terms enter ing i n t o  the  surface forces  X+kliand 
X++(*)3. 

Let us set up t h e  funct ional :  

r =fJ { f;(p,-P F ; ) ~+(pF, -pF;y + (pF, -p F 3  (1 -k,z)x 
0 (SI --hi 
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I IIIII.. 1111 I I 111 II 1 1 1 1 1 1  1 1 1 1  I , ,  I , .,. , , ...,.... ,,....., , -_-. ...~ 

c 

3)*+I.&-) 3 x;-)Icls dt. 
(11.4) 

where t, i s  an  a r b i t r a r y  i n s t a n t  of t h e  and t h e  i n t e g r a l  1extends over /258 
(SI

the  area of the  basic  surface.  The other symbols are known from Chapter 111. 

We shall determine t h e  generalized coordinates up'.) of a system replacing 
t h e  s h e l l  from the conditions of t he  minim?lm of the  funct ional  I. It i s  well  
known t h a t  here we may use t h e  d i r e c t  methods, f o r  example the  Ritz  method and 
the  c l a s s i ca l  method, by s e t t i n g  up the  Euler-Lagrange-Ostrogradskiy equa
tions*. We s h a l l  not consider t he  IXtz method bu t  discuss the  Euler-Lagrange-
Ostrogradskiy equations. L e t  us introduce the  notation: 

The Euler-Lagrange-Ostrogradskiy equations can be represented i n  the  fo l 
lowin,? form: 

(11.6a) 

9 Cf.,  f o r  example, V.I.Smirnov, Course i n  Higher Mathematics, Vol.IV, 
Gostekhizdat, 1951. 
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We s h a l l  consider the left-hand s ide of ea . ( l l .6a)  a s  the  functional de

aw' . Then the  system of eq.(ll.6a) can be replaced by the  shortr iva t ive  __ 
ZU;" 

formula 
2W 

6 I p  
-0. (11.6b) 

Equations (11.6a) o r  (11.6b) approximately determine the motion of an 
element of the she l l .  Making use of eq.(11.5) for the  function IJ, l e t  US /259 
put eqs . ( l l .6a)  i n t o  t h e  f o l l o d n g  form:  

o r  

2 2 

(p=  1, 2, 3; m=0, 1, 2, ... , N ) .  (11.To) 

Let us now consider i n  more d e t a i l  eqs.(l l .%),  separating t h e i r  l i n e a r  
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(i,j,k =1, 2; p =1, 2, 3). 

Subs t i tu t ing  eqs.( l l .2a)  - (11.3b) and (11.8a) - (11.9d) i n t o  eqs.(ll.?b), we 
obtain the  equations of motion of an element of t he  s h e l l  i n  expanded form. 
men  the l i n e a r  pa r t s  of these equations, however,will be highly cumbersome. 
The equations of moti2n can be somewhat s implif ied by changing the  metric on 
the  coordinate axis x , and by an appropriate se lec t ion  of t he  functions cp. (2). 
Let us assume t h a t  the  bas i c  surface of the  s h e l l  coincides with i t s  middle 
surface, i .e . ,  t h a t  h, = h2 = h. Let us put  
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Hence, we f i n d  

Selectin,? t he  constant C such t h a t ,  on va r i a t ion  of z over the  i n t e r v a l  
&),(-h, +h), t h e  var iab le  5 va r i e s  over the symmetric i n t e r v a l  (4, we obtain 

From eq.(a) r e s u l t s  /261 

(11.loa) 


where ds3 i s  an element of a r c  of the  t h i r d  coordinate in t e r sec t ing  t h e  unde
formed bas ic  surface a t  a r i g h t  angle, and 

g3a=[ I  - ( ( k , + k , ) z + k , k , z ? ] - ' .  (11.1Ob) 

I n  the  las t  r e l a t ion ,  z must be  regarded as a function of 6 determined 
by eq.(c>. O f  course, f o r  a su f f i c i en t ly  t h i n  she l l ,  a t  small values of t h e  
product z k i ,  we can approximately put 

C zz2. (11.1oc) 

The introduction of t he  vari2ble 5 somewhat s impl i f ies  eq.(ll. 'P). This 
transformation of t he  coordinate x = z does not a f f e c t  t he  form of the  nota
t i o n  of t he  o r ig ina l  equations (11.2a) - (11.3b), although t h e  meaning of the  
var iab le  coeff ic ients  of t h e  functions up"' and t h e  f i r s t  der iva t ives  W i l l  
d i f f e r  from t h e i r  meanings i n  the  o r ig ina l  system of coordinates+$. I n  par t ic 
ular, t he  quant i t ies  cp. ( 5 " ) )  will be  functions of t he  coordinates s3 , i .e.,  
t h e  s h e l l  of constant thickness, on introduction of t he  var iab le  5, W i l l  be, i n  
a manner of speaking, transformed i n t o  a s h e l l  of quasi-variable thickness. It 
i s  obvious tha t ,  a t  t h e  i n t e r n a l  po in ts  of t h e  she l l ,  t he  coordinate 5 ,  on 

-x- The introduction of a new metric on the  t h i r d  coordinate ax5s would permit 
simplifying t h e  notation for ce r t a in  of t h e  equations considered i n  Chapter 111. 
I n  this way, t he  t e r m s  e x p l i c i t l y  containing t h e  curvature k, of the bas i c  
surface would be eliminated from these equations. 
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different ia t ion,  must b e  regarded as an  independent variable. We W i l l  not an
a lyze  the  question of t he  bes t  method of se lec t ing  t h e  funct ions y . ( ~ ) ,  which 
now must be replaced i n  the  equations by the  funct ions cp, (5) .  

I n  v i e w  of t he  relatively small thickness of t he  she l l ,  the  choice of 
cp, (L) i n  t he  form of a power monomial 5' has considerable advantages. This 
case was  e s sen t i a l ly  considered by us i n  Chapter 111. Here we s h a l l  use a 
d i f f e ren t  p a r t i a l  s e l ec t ion  of t h e  funct ions T.(<). Let us put  

nnc' P z n  =cos -* 'PZn+l = s i n  -. (11.11)
I I 

Consequently, 
.rrl'po= 1 ;  (p, =0; cp2 =cos -; cp3 =sin .c -; (p4 =cos 2nr 

etc.I I I 

We r e c a l l  t h a t  t he  quant i ty  4, i s  a funct ion of the  coordinates sJ . The 
system of functions cp. ( c )  introduced by eqs. (11.11), i s  orthogonal over the 
i n t e r v a l  (4,2 , ) .  The same propertv i s  possessed by the  der iva t ives  cpJ(5) 
and 9; (cj. 

We a l s o  note t h e  following r e l a t ions  which r e s u l t  from e q s . ( l l . l l ) :  /262 

(112) 

Consider now the  equations of motion r e su l t i ng  from eqs.(l l .n).  A s  will be  
seen from eqs.( l l .%),  t h i s  system of equations i s  an i n f i n i t e  system consist-
in,? of nonlinear d i f f e r e n t i a l  equations of the  fou r th  order. It i s  c lear  t h a t  
a d i r e c t  appl icat ion of such a system i s  unpromising. For t h i s  reason, we 
must def ine the conditions mder  which t h i s  system i s  resolved i n t o  separate 
subsystems containing a f i n i t e  number of equations. 

The i n f i n i t e  system of equations r e su l t i ng  from e q s . ( l l . n )  can be de
composed i f ,  i n  setking up the Euler-Lagrange-Ostrogradskiy equations, we 
eliminate the  necessi ty  of var ia t ion  of t h e  nonlinear terms and of the terms 
w i t h  t he  coef f ic ien ts  Pt y , ,  N:q enter ing i n t o  t h e  composition of the  body 
forces  pFGq, and a l s o  eliminate the  va r i a t ion  of t h e  surface forces X?:

( t ) P  

I n  order t o  eliminate the  va r i a t ion  of terms with the  coef f ic ien ts  
and NY, as wel l  as the  nonlinear terms, we must replace,  i n  these terms, t he  
functions up"' by expansions of t he  form 

26h. 



(11.13) 


where a,$) are constant coef f ic ien ts  t o  be determined, and cg) represent a 
system of funct ions sa t i s fy ing  t h e  kinematic boundary conditions and the  con
d i t i ons  of completeness, ensuring t h e  p o s s i b i l i t y  of approximation of solu
t ions  of t h e  equations of t he  theory of s h e l l s  by expressions of t he  form of 
eq. (ll.l3)*. The second method of appro,dmate representat ion of these terms, 
based on the  method of successive approximations, will be  given below. 

To make i t  unnecessary t o  vary the  surface forces  XTxl , l e t  us employ 
the  following method: L e t  us resolve the  components of the prescribed body 
forces  X (=Yi n t o  the components k t i ) q X ( f ) q  and(1 - k t + l q ) X c k ) q .  The first 
summand w i  1 b e  regarded as a component of the  body force  S ( 5  -+ L)k(,),X(+),, 
where 6(L A )  i s  t h e  de l t a  function. These body forces  will b e  associated 
with the  prescribed forces. Let us a l s o  assoc ia te  with t h e  body forces  t h e  /263 
terms of t h e  body forces  pF# containing t h e  components expressed by 
eqs.(l l . l3).  L e t  us denotelthe new components of the  body forces,  f o r  brevi ty ,  
by the  symbol pR,, bu t  remember t h a t  they depend on the coef f ic ien ts  a$) . 
Then, instead of t he  fu rc t iona l  I expressed by eq.(11.4), we obta in  

1, = 2W dS dt, (11.14) 
0 (SI 

where, i n  d i s t i n c t i o n  t o  eq. (11.3 1 ,  

?twhere p% are components of t he  body forces  which can be determined from 
eqs.(ll.Za) - (11.2b) i f  the  terms entering with opposite si5ns i n t o  the  quan
t i t i e s  p R ,  a r e  cancelled out from the  right-hand s ide  of these equations. 
Equating t o  zero i n  eq.(11.15) t h e  terms containing t h e  surface forces,  we  
f i nd  

(11.16) 


t i c i t y ,  where t h e  R i t x  method i s  s e t  for th .  



faces  of t h i s  she l l ,  then t h e  quan t i t i e s  k t 5 , q  w i l l  vanish. I n  accordance 
wi-th the  Kirchhoff-Love hypotheses, t he  components X*+,, will vanish and the  
coeff ic ients  k ( . )  of the  nonvanishing X(*)q will bi -equal  t o  unity. 

Tne conditinns of a minimum f o r  t h e  funct ional  I, lead  t o  the  N e r -
Lagrange-Ostroqradskiy system of equations, which i n  t h i s  case w i l l  be of t he  
following form : 

( y - 1, 2, 3; m = O ,  1,.!2, - .- IL). 

I n  addi t ion t o  eqs . ( l l . l7) ,  we must a l s o  bear  i n  mind the  conditions de
termining the  coef f ic ien ts  a$$ i n  eqs. (ll.13). These conditions have t h e  
following form, w e l l  known from the  R i t z  method: 

(11.18) 


Thus, the  complete sys: ' ~ 7 fequations of t he  theory of s h e l l s  now con
sists of eqs . ( l l . l6) ,  (11.17), and (1-1*18). This system combines the  classi 
c a l  Euler-Lagrange-Ostroyradskiy equations with t h e  equations r e su l t i ng  from 
the Ritz  method. L e t  us now consider eqs . ( l l . l7) .  We s h a l l  f i r s t  introduce 
an abbreviated notation f o r  several  d i f f e r e n t i a l  operators:  
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(11.19a) 

(11.19b) 

The operators PJ') ( q  = 1, 2, 3)  depend on t h e  curvature k, of the  bas ic  
surface, s ince these curvatures enter  i n t o  the  parameter 1. However, t h i s  
dependence can be termed weak, espec ia l ly  f o r  t he  case of t h i n  s h e l l s  with the  
r a t i o  2h : Rmx 0.01. The operators Pp") are apparently c lose  t o  the  opera
t o r s  describing t h e  l i nea r  s t ress -s t ra in  state of a given p la te .  

Further, l e t  us  denote the  operators depending on the  curvature of the 
bas ic  surface of t h e  s h e l l  and on the  coordinate 5 as follows: 

(11.2Ob) 


Then, bearing i n  mind eqs.( l l . l2) ,  we f i nd  
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21 

Let us continue our consideration of the  quant i t ies  entering i n t o  
eqs. ( l l . l7) .  Again bearing i n  mind eqs.( l l . l2) ,  we f ind  

(U.22a ) 

(11.22b) 

(11.232) 


/266 

(11.22d) 
(11.22e) 

(11.22f) 

(11.22g) 

( i , j ,  k=l, 2; p ,  q = 1 ,  2, 3). 

Equations (11.2La) - (11.22g) yield the meaning of t he  abbreviated nota
t i o n  [eq.(l l . l7)]  for the  system of equations of motion of an element of the 
s h e l l .  For this, i t  i s  suf f ic ien t  t o  give t o  the  index p t he  values 1, 2, 3 ,  
and t o  take m successively equal t o  2n and 2h + 1. I n  this way, we obtain the  
system of equations 
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-. 
P;? (0 )  =0 

( n t = O ,  1, 2, .. . , N ) .  (11.23) 

where Pp'.) are t h e  operators ?hose meaning i s  given by eqs.( l l . lqa)  - (ll.19d). 
The components of t he  vector v a r e  determined i n  t h e  following manner: 

(ll.2.4) 
( h = O ,  1, 2, ...; r = l ,  2, 3). 

Equations (11.23) cons t i tu te ,  a t  N + a, an i n f i n i t e  system of fourth-
order equations. If no components of the  multi-dimensional vector 5 enter  i n  
the  function R, ,  then the  system of equations (11.2%) i s  resolved i n t o  auto
nomous subsystems, each containing six equations. Th i s  reso lu t iQn w i l l  take 
place d i r e c t l y  only i n  problems of t h e  mechanics of p l a t e s  or  s h e l l s  with zero 
curvatures ki of the  bas ic  surface. 

I n  t h e  remaining cases, no decomposition takes @ace. It i s  therefore  
necessary t o  determine the  components of the  vector u entering i n t o  t h e  quan
t i t i e s  PR, by eqs . ( l l . l3 ) .  I n  t h i s  case, as already noted, eqs.(11.23) Will 
contain indeterminate coe f f i c i en t s  a,$) . To determine these quan t i t i e s  we /267 
must use eqs . ( l l . l 8 ) ,  which a r e  a lgebraic  equations t h a t  a r e  l i n e a r  f o r  the  
l i n e a r  statement of the  problem and nonlinear i n  the  general case. We Will not 
Tive the  expanded form of these equations. We c a l l  a t t e n t i o n  only t o  one of 
t he  fea tures  of the  method developed by us. 

This method i s  based on t h e  combined use of eqs.(ll.23) - (11.24)deter
mining t h e  wanted functions as solut ions of a c e r t a i n  boundary problem, and on 
eqs . ( l l . l 8 )  which, when taken to,:ether With eqs. (11.13), y ie ld  the  approximate 
ana ly t ic  form of the  solut ion.  The method of combination of eqs.(ll.23) 
(11.21) and eq.(11.18) together w i t h  eq.(11.13) depends on the  scope of the  
problem of mechanics involved. I n  any par t i cu la r  approach t o  inves t iga t ion  of 
the  problem, however, we w i l l  gbtain an approximate representation of t he  mo
t i o n  of a s h e l l  element, which d i f f e r s  from so lu t ions  t h a t  a r e  analogous but 
a r e  obtained from other equations i n  tha t ,  i n  t h i s  case, t he  necessary condi
t ions  of t h e  minimum of the quadratic deviation from the  so lu t ions  of the  
three-dimensional theory of e l a s t i c i t y  will be s a t i s f i e d .  

'de note f i n a l l y  t h a t  t h e  condition of minimum of t he  funct ional  I, deter
mined by eq . ( l l . lh ) ,  ac tua l ly  'coincides with the  Gauss p r inc ip l e  of least con
s t r a i n t  Z of t he  system, i f  t he  constraint  Z i s  averaged over t he  time in t e r 
val  (0, t, >. 
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~~~~~Section 12. Boundary Conditions. Various Versions of theSolution of the
~~ 

General Problem of the D e c s  of Shells. Initial Conditions 


1. Remarks on Boundary Conditions
~ 

Let us consider the boundary conditions that terminate the statement of 

the problem and briefly discuss the various versions of its solution. 


To obtain a system of boundary conditions, let us find, on the contour 

surface of the shell, the components of the displacement vector and stress 

vector resulting from the approximate representations (11.1). Then, consid

ering the shell as a three-dimensional body, let us set up the boundary condi

tions on the contour surface of the she61 in accordance with the statement of 

the three-dimensional problems of the theory of elasticity considered in Chap

ter 11. Finally, using the method of least squares, let us require that the 

quantities resulting from the approximate representations (11.1) shall satisfy, 

on the contour surface of the shell, the requirement of the least-square devi

ation from the corresponding functions prescribed on the contour surface in 

the formulation of the three-dimensional boundary problem of the theory of 

elasticity. 


This program requires consideration of the following functionals: /26r 

(12.la) 


1. 4-1 ., 

(12.lb) 

where C is the contour of the middle surface of the shell, C, is that part of 
the contour on which the displacements are prescribed, % and f, are the com
ponents of the displacement and stress vectors prescribed on the respective 
parts of the contour surface, and u-zq and f-z,are the approximate expressions 
of these components determined by eqs.(ll.l). For definiteness we may assume 
that the functions cp. ((;) are expressed by eqs.(11.11). Let us denote 

The conditions of a m i n i ”  for the functionals Iz and Ij lead to the 
following conditions of the middle surface of the shell: 

(12.3a ) 



o r  

( p  =1, 2. 3; Nt :=0, 1, 2, . .. , N). ( 1 2 . 3 ~ )  

A" 
We re  11 tha t ,  on the  contour C y  the  derivatives - must b expressed 

a S J  

i n  terms of t h e  der ivat ives  along the  tangent and along t h e  pr inc ipa l  normal 
t o  the  contour C. W e  s h a l l  not consider the  conditions (12.3b) - ( 1 2 . 3 ~ )i n  
t h e  expanded form and confine ourselves t o  b r i e f  remarks on the  statement of 
the boundary problem of the  dynamics of s h e l l s  considered here. 

a )  We cannot d i r e c t l y  assert t h a t  the boundary conditions (12.3b)-(12.3c) 
are natural f o r  t he  va r i a t iona l  problem considered i n  Sect.11, a t  l ea s t  not /269 
with respect  t o  the  method by which they were  obtained. We must, therefore,  
def ine t h e i r  connection with the  natural boundary conditions. We Will do t h i s  
l a te r  i n  the  t ex t .  

b )  Naturally the  question arises as t o  the  exis tence and uniqueness of a 
solut ion of the  boundary problem under consideration. 

2. 	 On the  Existence and Uniqueness of Solutions of t he  Boundary Problem 
Posed 

It i s  wel l  known t h a t  theorems f o r  the  uniqueness of solut ions of l i n e a r  
s t a t i c  and dynamic three-dimensional problems of t h e  theory of e l a s t i c i t y  f o r  
f i n i t e  regions have long s ince been proved+*. Theorems of the  existence of so
lu t ions  have been proved f o r  three-dimensional l i n e a r  problems of t h e  s t a t i c s  
of an e l a s t i c  problem and a l s o  f o r  a number of problems of dynamics%+. 

Since we are here inves t iga t ing  only the  results of t he  approximation of 
the equations of t he  three-dimensional i n t e r n a l  problem of the  theory of elas
t i c i t y ,  leading t o  equations of t h e  elastodpamics of she l l s ,  we may i n  ad
vance assume with considerable ce r t a in ty  t h a t  these  theorems on the  existence 
and uniqueness of solut ions can a l s o  be extended t o  the  boundary problems under 
consideration. O f  course, t h i s  i s  merely a working hypothesis. 

+$ C f .  f o r  instance,  E.Trefftz, Mathematical Theory of Elas t ic i ty ,  ONTI,  1934 

++% See preceding footnote and a l s o  V.D.Kupdraze, Boundary Problems of t h e  
Theory of Vibrations and In t eg ra l  Equations, Gostekhizdat, 1950 
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We will not f u r t h e r  discuss  the  proofs of these theorems with respect  t o  
the  theory of s h e l l s ;  confining ourselves t o  t h e  following remark: If we do 
not require s a t i s f a c t i o n  of t h e  necessary conditions (12.3b) - ( 1 2 . 3 ~ )f o r  t h e  

, extremum of the  func t iona ls  I2 and Ij, then i t  can be asser ted  that the re  ex
i s t s  a solut ion of eqs.(ll.l8) and (11*23)f o r  which t h e  sum I, + I3 will have 
a minimum. The question of the uniqueness of such a so lu t ion  remains open. 

3. Natural Boundary Conditions 

There i s  no d i f f i c u l t y  i n  determining t h e  na tu ra l  boundary conditions f o r  
t h e  problem of t h e  extremum of the  funct ional  I,, expressed by eq.(11.14). 
However, we will not inves t iga te  these  conditions, r eca l l i ng  t h a t  t h e  boundary 
conditions f o r  the  three-dimensional problem of the  theory of e l a s t i c i t y  con
sidered i n c h a p t - I I a r e  natural*. The conditions (12.3b) - ( 1 2 . 3 ~ )found by us 
a r e  t h e  r e s u l t s  of t h e  requirement of least-square deviations of t he  so lu t ions  
of t he  problem of the  elastodynamics of s h e l l s  from the  natural boundary con
d i t i o n s  of t h e  three-dimensional problem of the theory of e l a s t i c i t y  on the  /270 
contour surface of t he  she l l .  This requirement i s  i n  agreement w i t h  the  fund
amental p r inc ip le  of constructing t h e  equations of the  elastodynamics of s h e l l s  
as applied i n  Sect.11. I n  t h i s  connection, we may consider the  conditions 
(l2.3b) - ( 1 2 . 3 ~ )as na tura l  conditions f o r  the  extremum of t h e  funct ional  I1 
i n  an extended sense, even i f  they do not coincide with t h e  natural  boundary 
conditions of t he  va r i a t iona l  problem. 

I n  conclusion, l e t  us discuss  possible versions of t he  solut ion of t he  
system of equations (11.16), (11.18), (11.23), (11.2%) w i t h  t he  boundary con
d i t i o n s  (12.3b) - ( 1 2 . 3 ~ ) .  

F i r s t  l e t  us concentrate on the  system of funct ions ? l q .  Although t h e  
system of equations constructed by us i s  complete, i .e . ,  t e number of equa
t i o n s  i s  equal t o  t h e  number of functions sought, i t  i s  not advisable t o  a t 
tempt an Itexacttt determination of t he  quan t i t i e s  k ( i I q  from these equations. 
The i t e r a t i o n  method should be used. For t h e  beginning, l e t  us put t he  func
t ions  k ( f J p  equal t o  zero o r  unity,  zero corresponding t o  the exact sa t i s fac
t i o n  of the boundary conditions on t h e  boundary surfaces  of the  shel l ,  and 
uni ty  t o  the appl ica t ion  of the  Kirchhoff-Love hypotheses. Then, adopting one 
or t he  other method, l e t  us  proceed t o  the  so lu t ion  of t ne  boundary problem. 

I n  Section 11we mentioned one of t h e  procedures f o r  t h i s  solution, based 
on eqs . ( l l . l J ) .  A d i f f e r e n t  version of t he  so lu t ion  i s  possible, permitting 
us t o  exclude from consideration the  approxhate  expressions f o r  t h e  compon
ents  u$’) and, consequently, eqs . ( l l . l8 ) .  This version i s  based on an i t e r a 
t i o n  process. 

Assigning t o  t h e  coeff ic ients  k (k lq  de f in i t e  values and re jec t ing  i n  t h e  
quasi-body forces  PR, a l l  terms depending on the  quantity ud”, l e t  us solve 
the  bomdary problem of the  s h e l l  theory. Then, from eqs.(ll.l6),we f i n d  the 
corrected values of k(&lq and introduce i n t o  P% t h e  terms depending on t h e  

* Cf.,  f o r  instance, V.I.Smirnov, Course i n  iIigher Mathematics, Vol.IV, p.295, 
Gostekhizdat, 1951 
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quan t i t i e s  $‘I found as a r e s u l t  of t h e  o r ig ina l  approximation. The process 
i s  then repeated. Evidently, we can expect pos i t ive  results when this method 
i s  applied t o  t h e  ca lcu la t ion  of plane she l l s ,  s ince most of t he  terms re jec ted  
i n  obtaining t h e  o r ig ina l  approximation depend on the  curvature of the middle 
surface of the  she l l .  

A s  i n  t h e  preceding Chapter, we note the  cor re la t ion  of t h e  solut ion of . the  e l a s t o d y n d c  eq,uations of t he  theory of shells,  found by the  method under 
study, with the  general methods of the  mathematical theory of e l a s t i c i t y .  ‘&en 
determining t h e  components of t he  displacement vector by the  approximate for
m u l a s  (ll.l), we a r e  evidently ab le  t o  f i n d  the  components of t h e  s t r a i n  ten
sor ,  and, from Hookels l a w ,  t he  components of t he  s t r e s s  tensor .  

The Saint-Venant compatibility conditions Will be  satisfied. The equa
t ions  of motion on the  boundary conditions W i l l  be approximately sa t i s f i ed .  
Here t’le s a t i s f ac t ion  of t he  boundary conditions on t h e  boundary surfaces of 
the  s h e l l  can be improved by se lec t ing  t h e  functions k p .  The introduction 
of t h e  funct ions k( i t )p  i s  one of t he  f ea tu res  of the  proposed method. 1271 

We s h a l l  now take up a question not y e t  discussed. The equations obtained 
i n  Sect.11 d i f f e r  from (111, 24.27 - 24.29) found from the  general equation of 
dynamics, i n  being of a higher order. T h i s  r e s u l t s  i n  ce r t a in  complications i n  
s t a t i n g  t h e  i n i t i a l  conditions. It i s  na tura l  t o  use here a method based on 
the  approximate s a t i s f a c t i o n  of the  i n i t i a l .  conditions, s t a r t i n g  from the  re
quirements of t h e  least-square deviation of t he  approximation functions from 
t h e  funct ions describing these conditions. 

Let us assume i n  accordance w i t h  (11, 8.la - 8. lb)  t h a t ,  a t  t he  i n i t i a l  
time to, the  components of t he  displacement vector uio and of the  ve loc i ty  
vector & a r e  assigned as functions of t he  coordinates of a point  of the  she l l .  
If these funct ions a r e  d i f fe ren t iab le ,  then, by d i f f e ren t i a t ing  them we s h a l l  
f i nd  the  f i e l d  of the  i n i t i a l  r a t e  of deformation. 

I n  ce r t a in  problems of dynamics, t he  functions ut0 and q.40a r e  not d i f f e r 
en t iab le .  An example i s  given by the  i n i t i a l  values of the  longi tudinal  ve
l o c i t i e s  i n  a rod under longitudinal impact. If the  funct ions u10 and qo a r e  
not d i f f e ren t i ab le ,  t he  i n i t i a l  f i e l d s  of deformation and of t h e  r a t e  of de
formation must be  independently prescribed. 

To s e t  up the  i n i t i a l  conditions of t h e  problem, l e t  us  consider t he  four  
funct ionals  : . 

(12.4a) 
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. 
where E i s  an a rb i t r a ry  small t h e  in te rva l .  The Lagrange function L i s  es
tablished from the  components of t.he ve loc i ty  vector  of a s h e l l  element , j u s t  
as the  function L i s  established from the  components of the displacement vec
to r .  The other notation i s  familiar from the  preceding discussion. 

We w i l l  define the  i n i t i a l  conditions, s t a r t i n g  from t h e  conditions t h a t  
the  functionals I,, 12, I3 and 4 sha l l  be minimum. The physical meaning of 
this requirement i s  obvious. A s  f o r  t he  funct ional  4, i t  contains the  "ener
gy of acceleration" which en ters  i n t o  the  Gauss pr inc ip le  of l e a s t  constraint ,  
and t h e  rate-of-strain energy. Thus, t h i s  funct ional  i s  connected with t h e  
quant i t ies  characterizing t h e  minimum propert ies  of the accelerat ions of the  
ac tua l  motion of the  system. It would a l s o  be possible t o  introduce direct- /272
l y  the  Gaussian constraint  Z of the system, bu t  this would make i t  impossible 
t o  use the ana ly t ic  apparatus employed above. 

The requirement f o r  minimizing t h e  funct ionals  11, 12, Is, and 4 i s  ob
viously equivalent t o  the optimum simulation of the  in i t ia l  mechanical s t a t e  
of the s h e l l  by the quant i t ies  resu l t ing  from the  approximate equations (11.1). 
If we introduce the notation 

+ I  S l  

then the necessary conditions f o r  t he  functionals I,, 12, I3 and 4 t o  be min
imum will take the  following form: 

(12.6a) 

( p =  1, 2, 3; m = O  1, 2. .. .). 

and upo 
E uations (12.6a) permit a d i r ec t  determination of  the i n i t i a l  values ~ $ 5 )(8... Subst i tut ing these values i n t o  eqs.(12.6b), we obtain the initial 

values $8) and then, passing t o  eqs.(12.6c), the i n i t i a l  values '$('I . O f  
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course, there  may be other approaches t o  the  determination of t h e  extended 
system of in i t ia l  conditions. 

I n  t h i s  Chapter, we have considered the  method of l i n e a r  approximation of 
t h e  components of t he  finite-deformation tensor.  Such an  approximation per
mits eliminating only a p a r t  of t he  nonlinear terms from t h e  Lam6 equations, 
bu t  does not exhaust t h e  p,roblem of l inear iza t ion ,  s ince other  sources of non
l i n e a r i t y  s t i l l  remain, including t h e  Chr is tof fe l  symbols {J: 3 of the  Lagrangian 
coordinates of a medium with extensive deformations and nonl inear i ty  i n  t h e  
boundary conditions. For this reason, we must apply the  method of l i n e a r  /273 
approximation t o  the  quasi-body forces  containing nonlinear terms enter ing i n t o  
t h e  Lam6 equations. The complexity of t h e  ana ly t ic  expressions f o r  these 
quasi-body forces,  however, prevents us f o r  t he  t i m e  being from developing t h e  
method of l i n e a r  approximation i n  a general  form. 

Section 13.  Approximate Methods of Inves t iga t ing  the  -Equilibrium and Oscilla._ -. - ..... ~ 

. ~- . ~ ~~- - Systems*t ions  of She l l s  asDiscrete-Continuum 

I n  concluding our discussion of t he  problem complex connected with t h e  
general  problem of construct ing a mechanical system closely related,  according 
50 ce r t a in  c r i t e r i a ,  t o  some prescribed system, l e t  us b r i e f l y  discuss the  
method of reducing t h e  problems of t he  theory of s h e l l s  t o  problems of t he  
study of motion of systems with a f i n i t e  number of degrees of freedom. W e  
s h a l l  c a l l  such a system a discrete-continuous system. 

The concept of "discrete-continuous system" w a s  introduced i n t o  the  theory 
of s h e l l s  by V.Z.Vlasov (Bibl.3b). I n  h i s  terminology such a system i s  a thin-
walled e l a s t i c  two-dimensional system possessing a f i n i t e  number of degrees of 
freedom along one of the  coordinates and a n  in f in i t e ly  great  number along t h e  
other.  

We will a l s o  use t h i s  t e r m  i n  what follows, but  s h a l l  give i t  a d i f f e r e n t  
meaning. By the  term "discrete-continuous system!' we s h a l l  understand a con
tinuous medium whose dynamic s ta te  i s  approximately determined by a system of 
funct ions of t h e  related t o  a d i sc re t e  s e t  of points  on the  bas ic  surface of 
t h e  she l l .  Whatever other  aspects  of t h e  concept of discrete-continuous sye
t e m s  are possible, will not  be  considered here. 

The inves t iga t ion  i n  t h e  f ina l  p a r t  of t h i s  Chapter proposes t o  give a 
method of reducing t h e  problem of der iving quant i t ies  t h a t  determine the  
s t r e s s - s t r a in  s t a t e  of a s h e l l  t o  t h e  so lu t ion  of f i n i t e  systems of a lgebraic  
equations i f  the s h e l l  i s  i n  equilibrium, and t o  t h e  so lu t ion  of a system of 
ordinary d i f f e r e n t i a l  equations of second o r  higher order i f  vibrat ions of t he  
s h e l l  are t o  be studied. 

The pr inc ip le  ana ly t i c  approach t o  the  construction of equations describ
ing  t h e  s t a t e  of a s h e l l  as a discrete-continuous system i s  the  use of i n t e r -

-:$ The substance of t h i s  and t h e  fo l lowhg  Sections was presented t o  the  All-
Union Conference on t h e  Theory of Plates and Shel l s  held a t  Kazan i n  1960. 
C f . ,  t h e  author 's  paper i n  t h e  Transactions of t h e  Conference. 
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pola t ion  formulas t h a t  express the  values of t he  functions sought i n  terms of 
a d i s c r e t e  s e t  of t h e i r  values a t  the  nodes of a ce r t a in  net*. Consequently, 
here, too, as i n  the  e a r l i e r  p a r t  of t h i s  Chapter, we intend t o  use one of /274
t h e  methods of approximation functions. 

The choice of such a method i s  a rb i t r a ry .  W e  have not investigated t h e  
comparative effect iveness  of t he  various methods of approximation functions i n  
appl ica t ion  t o  the  bas i c  problem, the  replacement of t h e  s h e l l  by a system with 
a f i n i t e  number of degrees of freedom. 

Section 14. The Fundamental Discrete System of Unknowns 

To construct t he  discrete-continuous system replacing t h e  she l l ,  one of 
t he  above-considered reduction methods must be used. 

We s h a l l  apply the  methods studied a t  t h e  beginning of Chapter 111. T h i s  
method i s  closest  t o  t he  method based on t h e  Kirchhoff-Love hypotheses. O u r  
results discussed below can, therefore, be  extended without fundamental com
p l i ca t ions  t o  the  c l a s s i c a l  theory of she l l s .  . 

A s  shown previously (111, Sect.5), t he  three-dimensional problem of t h e  
theory of e l a s t i c i t y  can be reduced t o  a determination of six functions of a 
point  of the  basic  surface of t he  she l l .  These functions a r e  the  displacement 
vector components u, of a point  of the  bas i c  surface of t he  she l l ,  and the  co
var ian t  der ivat ives  V3u1. 

Assume t h a t  the values of the  six functions, determining t h e  s t a t e  of t he  
she l l ,  a r e  known.at t h e  nodes of some net on the  bas ic  surface. Then the  value 
of these functions a t  t h e  intermediate poin ts  can be determined by one of t h e  
in t e rpo la t ion  formulas. This permits us t o  express the  s t r a i n s  and, by means 
of Hookers law,the s t r e s s e s  a t  an a r b i t r a r y  point  of t he  s h e l l  i n  terms of 
t h e  values of unknowns a t  t h e  nodes of t he  net.  

The in te rpola t ion  method involves the  r e l a t i v e  order of the terms re
ta ined on reduction of t he  three-dimensional problem of t h e  theory of elas
t i c i t y  t o  a two-dimensional problem i n  expansions of the  form of (111, 4.2) ,  
(111, L,5a) ,  (111, 4.5b) and subsequent r e l a t i o n s  resu l t ing  from those enum
erated. 

Making lise of eas.(II,2.11) and expansions of the form of (111, 4.2), /275 
l e t  us consider, f o r  example, elementary and roughly approximate representa-s+ 

-::We r e c a l l  t h a t  t h e  use of in te rpola t ion  formulas w a s  given i n  t i e  theory of 
s h e l l s  by 1.Ya.Shtayerman i n  h i s  work "On t h e  Application of In te rpola t ion  
Methods t o  the Approximate In tegra t ion  of t he  Di f f e ren t i a l  Equations of Equi
l ibrium of m a s t i c  Shel l s" ,  V i s t i  KPI, Vo1.2, 1927 and i n  t h e  problems of 
s t r u c t u r a l  mechanics, by N .V .Kornoukhov i n  h i s  paper "An Interpolation-Itera
t i o n  Method of Solv ing  t h e  Dif fe ren t ia l  Equations of Strength and S t a b i l i t y  of 
Prismatic Rods", Sbornik trudov I n s t .  s t r o i t .  mekhan AN UkrSSR, Vol.11, 1949 
3%- T h i s  approximation corresponds t o  t h e  accuracy of determination of the  
s t r a i n  tensor components adopted i n  t h e  c l a s s i c a l  theory of she l l s .  
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t i o n s  of t he  components of t he  s t r a in  tensor, 

where 

sj =v3ujl z -0 .  (14.2) 

The meaning of t h e  other symbols has been given i n  Chapter 111. 

I n  s e t t i n g  up eqs.(lf+.la) - (U+.lb), we retained i n  t h e  nonlinear p a r t  of 
t he  s t r a i n  tensor  components only those terms w i t h  t h e  grea tes t  s ignif icance 
according t o  t h e  well-known pos tu la tes  t h a t  can be traced back t o  the  inves t i 
gations by T.Karman. 

The r i g h t  -hand s ides  of eqs .(14.l a )  - (14.l b  ) contain f i rs t -order  deriva
tives with respect  t o  the  coordinates xi( i = 1, 2). For this reason, remain
ing  a t  l e a s t  within the  limits of accuracy adopted i n  the  net method, l e t  us 
apply the  following in te rpola t ion  methods: Let us cover the  bas ic  surface with 
a t r iangula t ion  net,  and within each t r i ang le  l e t  us i n t e rpo la t e  t h e  unknown 
functions by l i n e a r  functions of t he  coordinates of t he  bas ic  surface, taking 
values equal t o  the  values of t h e  unknown functions a t  the  ve r t i ce s  of the  
t r iangle .  

Consider f o r  example t h e  t r i a n g l e  Fl (p, q),  && ( p  + 1, q), !'b (p, q + 1). 
tlere, p and q a r e  t h e  numbers of t h e  nodes of the  ne t  on the  coordinate l i n e s .  
The component of displacement uJ wi th in  the  t r i a n g l e  MI, &, & w i l l  be ex
pressed by t h e  equation 

o r  

The coef f ic ien ts  of t h e  l i n e a r  t r inomials  which a r e  t h e  f ac to r s  of t he  
components u J (&)  i n  eq.(l4.3b) can be found from a comparison of eqs.(l4.3a) 
n i t h  eq.(14.3b). We w i l l  not give the  expressions f o r  these  components. The 
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functions 9~ within the t r i ang le  MI&& are similarly determined. 

The quan t i t i e s  uj(1% ) and ($) i n  t h e  problems of dynamics are functions 
of t he  t i m e  t. I n  problems of s t a t i c s ,  they do not  depend on t h e  time. /;L76 

Approximating t h e  displacements uJ"1 by l i n e a r  functions of z, we complete 
the  construction of the  quan t i t i e s  t h a t  approdmately character ize  t h e  state 
of a prismatic element of t he  s h e l l  r e s t ing  on the  t r i a n g l e  M1&&. 

Making use of eqs.(l&.la) - ( U . l b ) ,  we can approximately determine the  
s t ra in-s t ress  state of the  s h e l l  i n  the prismatic element r e s t ing  on t h e  tri
angle MI&%. I n  re la t ive accuracy, this determination corresponds ( f o r  ex
ample) t o  the  accuracy with which the  s t ress -s t ra in  s t a t e  i s  determined f o r  a 
one-dimensional rod i n  longi tudinal  vibrat ion,  i f  the  rod i s  replaced by a sys
tem of concentrated masses connected by weightless springs. The difference i s  
primarily tha t ,  i n  the  rod, when this method of approximate so lu t ion  of the 
problem of longi tudinal  v ibra t ions  i s  used, the  s ing le  component of t h e  s t r a i n  
tensor has discont inui t ies  a t  the  points  a t  which the  mass i s  concentrated, 
w h i l e  i n  t he  case under consideration the  faces of the  prismatic elements will 
be  surfaces of separat ion of t h e  s t r a i n  tensor  components. The s i x  pr inc ipa l  
quant i t ies ,  however, w i l l  r e t a i n  t h e i r  cont inui ty  on these surfaces.  

Further refinements will lead t o  an increase i n  t h e  number of terms re
tained i n  expansions of t he  form of eqs.(l4.la) - (14.lb) and t h e  consequences, 
as we know from Chapter 111, wi l l  introduce i n t o  the  expansion derivatives of 
second and higher order with respect  t o  the  coordinates of the  bas ic  surface, 
so t h a t  t he  l i n e a r  approximations of t he  form of eqs.(lL+.3a) - ( l4 . jb)  will 
become insu f f i c i en t .  'VJe must take  recourse t o  in te rpola t ion  formulas i n  the  
form of polynomials of the  coordinates d ( j  = 1, 2)  of t he  second, t-hird, and 
higher orders. This W i l l  complicate the  base region of approximation. 

I n  an approximation by l i n e a r  trinomials, suzh a region, as already men
tioned, i s  a t r i ang le .  For an approximation by polynomials of t he  second de

l gree we may, f o r  instance,  use a tldoublettt r i a n g l e  fill(p, q), &(p + 2, q), 

mate the  polynomials of t he  third-degree t l t r i p l e l tt r i ang le  with an addi t ional  
i n t e rna l  point, etc. .  R e  f l f r ac t iona l f lnumbering of the  in te rpola t ion  nodes 
ind ica tes  t3e pos i t ion  of an auxiliary node between the nodes of the  main re-
<$on, which remains a t r i ang le  w i t h  integers  used i n  numbering i t s  nodes. For 

-1example, the  node &(p  + 2 '  
q) l i e s  on the  s t r a i g h t  l i n e  joining t h e  

nodes Ml(p, q )  and r/h ( p  + 1, q) .  A l l  these cases lead  t o  approximation formu
las f o r  the  six pr inc ipa l  functions tha t  a r e  l i n e a r  with respect t o  the values 
of these functions a t  t he  nodes of the net .  

The coef f ic ien ts  of the  values of the pr inc ipa l  unknowns a t  t h e  nodes of 
a net  are polynomials of the  coordinates x i ( i  = 1, 2 ) ,  equal t o  unity a t  the 
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respective node and equal t o  zero at a l 1 , o t h e r  nodes. We have 

The sums a re  extended t o  t h e  base regions of approximation indicated above. 
L e t  us denote t h e  coordinates of t he  nodes by & and 4 .  men 

where, as mentioned above, cppp and q P q  a r e  polynomials of the coordinates xi of 
the  bas ic  surface of the  she l l .  

The expressions (ll+.'.La)- (l/+.Lb), as wel l  as the  reduction formulas con
sidered i n  Chapter 111, y ie ld  approximate expressions f o r  the po ten t i a l  and 
k ine t i c  energy of the s h e l l  and make i t  possible  t o  construct the  Lagrange 
function L-3. The generalized coordinates here W i l l  b e  the  quant i t ies  UJ (p, q) 
a n d a 3 ( p ,  q)..  Among ttlese generalized coordinates, however, there  may a l s o  be  
redundant coordinates, s ince the  boundary conditions of the  problem impose, 
on the  quant i t ies  uJ (p, q)  and a j(p,  q) ,  r e s t r i c t i o n s  which a r e  ana ly t i ca l ly  
e-xpressed by the  equations of SezJmetric connectivity, and i n  the  general  case, 
of kinematic connectivity. Let us consider t h i s  question i n  grea te r  d e t a i l .  

~-.-Section 1 5 .  	 Boundary Conditions and t h e  Equations of Connectivity. 
I n i t i a l  Conditions 

I n  considering the  boundary conditions w e  s h a l l  start from the  concepts 
of the three-dimensional s t ress -s t ra in  s t a t e  of the  she l l ,  as auopted i n  Chap
t e r  111. 

The var ious boundary conditions introduce no addi t ional  complications i n t o  
the  so lu t ion  of the  problem by this method. Kinmat ic ,  k i n e t i c  and mixed boun
dary conditions may b e  prescribed on the  contour surface. These conditions 
lead t o  equations of l i n e a r  and nonlinear geometric and kinematic connectiv- /278 
i t y .  

Without going i n t o  d e t a i l ,  l e t  us consider the  cases of the  pr inc ipa l  
boundary conditions prescribed on the contour surface of t h e  s h e l l .  

0 %re L i s  the  Lagrange function for t he  shell as a whole, ra ther  than t h e  
dens i ty  of t he  Lagrange function considered above, and i s  termed f o r  b rev i ty  
the  "Lagrange function". 
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1. F i r s t-Boundary Condition 

On the  contour surface C, l e t  t he  displacements * b e  given: 

(q')c 2, t )  (i =1, 2, 3; j =1, 2).='pi(d, 

Making use of t h e  notat inn adopted i n  Chapter 111, and se t t i ng  

we find, from (111, 6.ha) - (111, 6,!+b), equations val id  m e r  tne e n t i r e  bas i c  
surface, including i t s  contour C. 

(i, s =  1 ,  2). 

Again making use of the  expansions (111, 13.3) and confining ourselves t o  three 
terms of the expansions on the  right-hand s ides  of eqs.(15.3a) - (15.3b) we 
obtain 

( U J C  = ( p i  ( x i ,  0, t ) ;p i ) C =  cpl') ( X j ,  0, t )  
( i =  1, 2,3;j =  1, 2). 

Tne condition (15.L.a), af ter  appl icat ion of the  in te rpola t ion  formulas, 
Will lead t o  equations of ,geometric connectivity r e l a t i v e  t o  the  generalized 
coordinates ~ ( p ,q)  and e i ( p ,  q). I n  f ac t ,  making use of eqs.(U.L+a) - /279
(U.L!.b), we obtain from eq.(l5./+a): 

* We r e c a l l  t ha t  on the  contour surface the  coordinates xJ are connected by 
t h e  equation of the  contour of t he  basic  surface. 
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(i= 1, 2, 3; j=1 ,  2). 

Equations (15.5) must be set  up for segments of arc of the  contour C be

longing t o  the  base regions of approximation t o  which t h e  sums are ex-
CP 9)


tended. It can be s imi la r ly  shown t h a t  t h e  connectivity determined by 
eqs.(l5.!hb) - ( 1 5 . L ~ )i n  the  general  case i s  not geometrical. We s h a l l  term 
i t  kinematic, although, i n  contrast  t o  the kinematic connectivity of c l a s s i c a l  
d y n d c s ,  i t s  equations contain der iva t ives  of the  second order with respect  
t o  the  time t of the  generalized coordinates, i f  we confine ourselves t o  t h e  
three  f i rs t  terms of the  expansions on the  right-hand s ides  of eqs.(l5.3a) t o  
eqs .(15.3b ) . 

2. Second Boundary Problem 

This problem has been considered previously (111, Sect.13) i n  t n e  formula
t i o n  t h a t  bes t  corresponds t o  t he  method under study. 

Making use of the  boumiary conditions i n  the  form of the equations of 
Cnapter I11 (111, 13.9a), (111, 13.9b) we again f i n d  equations of connectivity 
analogous t o  those considered above. We note here t h a t ,  re ta in ing  only t h e  
two f irst  terms on the  right-hand s ides  of the expansions (111, 13.6) we ob
ta in ,  i n  t he  general  case, one equation of geometric connectivity, and one 
equation of kinematic connectivity, which r e s u l t s  d i r e c t l y  from a considera
t i o n  of the  left-hand s ides  of eqs.(III, 13.9a), (111, 13.9b). 

We will not write out t he  equations of these connect ivi t ies .  L e t  us dis
cuss on ly  t h e  cases i n  which the  kinematic connectivity degenerates, as already 
discussed i n  our consideration on t h e  bas ic  boundary problems. 

If the  conditions of attachment of the  contour of the  bas ic  surface in
clude i n  themselves t h e  conditions t h a t  some displacement component on t h e  
contoilr C s h a l l  vanish, then t h e  wave operator M f o r  t h i s  component will be 
transformed, as will be  seen from (111, 6.3a) , into a Laplace operator on the  
contour C. I n  t h i s  case the  equations of kinematic connectivity r e su l t i ng  from 
t he  conditions (15.4b) - ( 1 5 . 4 ~ )are transformed i n t o  equations of geometrical 
connectivity. Obviously, this does not a p ly  t o  the  derivatives of t he  opera
tor M with respect  t o  the coordinates x' (E = 1, 2). Tnese derivatives appear 
when introducing, i n t o  the  expansions of I$) i n  powers of z, t e r m s  contain- /280 
i n g  z i n  degrees higher than the  second. 
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I n  conclusion, we will make a b r i e f  statement on the  correspondence be
tween the  boundary conditions and t h e  equations of motion. L e t  us t u rn  again 
t o  (111, Sect.13). There, we showed t h a t  t h e  boundary conditions obtained as 
a r e s u l t  of t he  method of successive approximation cannot be satisfied with the  
same relative accuracy as the  system of equations determining t h e  displacements 
of t h e  points  of t h e  bas i c  surface. 

These conclusions do not extend t o  the  method studied here, s ince we do 
not exclude the  components f t ~by means of successive approximations. The V a l 
i d i t y  of the  above becomes obvious from a comparison of t he  number of equations 
if motion and the  number of equations of connectivity. 

j. I n i t i a l  Conditions . .  

The in i t i a l  conditions were considered previously (111, Sect .U),where 
we used the  method of successive appro-ximation, which, as already mentioned, 
will not be  applied here. 

&king use of t he  conditions (111, 14.1) and t h e i r  expansions i n  s e r i e s  
i n  ascending powers of z of the  form (111, Ilc.2a), and a l s o  making use of 
eqs.(15.3a) - (15.3b), we f i n d  a system of i n i t i a l  conditions similar t o  the  
system considered above (111, Sect.14). ‘dithout wri t ing out these  conditions 
again, l e t  us f i rs t  pose the  question whether t h e  i n i t i a l  conditions correspond 
t o  the  order of the system of d i f f e r e n t i a l  equations of motion mentioned before 
(111, Sect.14). A d e f i n i t e  answer can be  given here only f o r  the  case of a 
l i n e a r  dependence between the  displacements uJz)and t h e  coordinates z. T h i s  
case corresponds t o  the  representat ion of t he  s t r a i n  tensor  components by 
eqs.(lb.la) - (14.1b). Then the  numb$r of in i t ia l  conditions containing the  
i n i t i a l  values uiO(p, q), e io (p ,  q), ulO(p, q), hio(p,  q )  (i= 1, 2, 3) will b e  
twelve for each p a i r  of nmbers  (p, q). The system of equations of motion con
s i s t i n g  of six d i f f e r e n t i a l  equations of t he  second order f o r  each p a i r  of num
bers  (p, q) w i l l  be  of an order equal t o  the  number of i n i t i a l  conditions. 

If, i n t o  the  expansions of t he  displacement-vector and strain-tensor 
components, we introduce terms with the  f a c t o r  z”, then, considering the  cases 
of degeneration of the  kinematic boundary conditions, we f i n d  tha t  the number 
of i n i t i a l  conditions Will increase t o  eighteen, w h i l e  t he  system of differ
e n t i a l  equations of motion, as shown i n  the  following Section, wil l  consist  of 
th ree  equations of t he  s i x t h  order and three  of the  second order, f o r  each p a i r  
of numbers (p,  q). 

... The i n i t i a l  conditions here wi l l  contain qo (p , - q), G 0 ( p ,  q), G0(p ,  q), 
uio (p, q), e i 0(p, q )  and ii  (p, q). There are not enough of these condi- /281 
Lions, and we must‘ consider the next terms of the  expansions of the displace
ment vector  cgmponents with the  f ac to r  z”. If, i n  t h i s  case, t he  r e l a t i v e  ac
curacy of the  equations of motion and t h e  equations of connectivity remains un
changed, then the number of i n i t i a l  conditions increases  t o  twenty-four f o r  
each p a i r  of numbers (p, q ) ;  these w i l l  n3w include the  i n i t i a l  values of tne 
der iva t ives  of the four th  and f i f t h  order with respect t o  time, $6) (p, q )  
and u{z) (p, q). Thus, t o  solve the problem, the i n i t i a l  conditions must be 
sat isf ied with a higher degree of accuracy than the r e l a t i v e  accuracy of the 



equations of motion and t h e  equations of connectivity.  

Section 16.  Equations of Motion of the  She l l  

I f  the  bourldary conditions lead t o  equations of geometric o r  degenerate 
kinematic connectivity, we can make use of t he  Ostrogradskiy-Hamilton p r inc ip l e  
t o  se t  up the  equations of motion of the  nodes of the  in te rpola t ion  net  on t h e  
bas i c  surface of the  she l l .  

The Ostrogradskiy-Hamilton pr inc ip le  i s  expressed, as w e  know, by t h e  
following var ia t iona l  equation: 

t .s^(6A+6 L )  d t  =0, (16.1) 

where bjA i s  the  elementary work of t he  nonconservative forces  performed on 
passage of the  points  of the  system from t h e  t r a j e c t o r i e s  of ac tua l  motion onto 
the  t r a j e c t o r i e s  of comparison, and L i s  t h e  Lagrange function of the  s h e l l  Itas 
a wholet1. 

I f  we confine ourselves t o  the f i r s t  two terms on the right-hand s ides  of 
eqs. (15.3a) - (15.3b), and represent the s t r a i n  tensor components by eqs . (U . l a )
- ( l / + . l b ) ,  then the zquations of motion of the  discrete-conti'nuous system re
placing the  s h e l l  Will b e  of the  form of Lagrange equations of the second kind: 

(16.2a) 

(16.%b) 
( i =  1, 2, 3) .  

where Ql and c f l  are generalized nonconservative forces .  

!-Iowever, as we know, we have the  r i g h t  t o  include a l s o  conservative forces  
i n  these generalized forces,  if t h i s  can help t o  simplify solut ion of the  prob
l e m .  

I f  t he  equations of kinematic connectivity degenerate on consideration /282 
of three  terms i n  the  expansions of the  displacement vector  i n  powers of t h e  
coordinate z, then we can again make use of the Ostrogradskiy-Hamilton prin
c i p l e  (16.1) i n  s e t t i n g  up t h e  equations of motion, bu t  i n  t h i s  case t h e  La-
.mange function L Will contain the  second and t h i r d  t i m e  der ivat ives  of t he  
ieneral ized coordinates ui(p, q) agd, as before, the  f irst  t h e  der ivat ives  of 
the  generalized coord ina tesa i  (p, q). We can convince ourselves of t h i s  by 
considering t h e  right-hand sides of eqs.(l5.3a) - (15.3b). Thus, under t h e  
adopted assumptions on the  equations of connectivity,  the  equations of motion 
of .the discrete-continuous system replacing t h e  s h e l l  Will now b e  of the fol-



lowing form: 

(i'l, 2, 3). 

Ne c a l l  t he  reader 's  a t t en t ion  t o  the  difference i n  the  orders of the 
equations enterini: i n t o  the subsystems (16.3a) - (16.3b). This difference of 
x d e r s ,  under the  methad of reduction here adopted, w i l l  occur when an odd num
be r  of terms i s  retained on t h e  right-hand s ides  of the expansions i n  tensor 
s e r i e s  of the  displacement vector  components q(') i n  ascending powers of z .  
Nith an even number of t e r m s  re ta ined i n  the  expansions, the  order of the equa
t ions  enter in3 i n t o  the  subsystems (16.3a) - (16.3b) will be the  same*. This 
asser t ion  i s  i n  pa r t i cu la r  i l l u s t r a t e d  by eqs.(16.2a) - (16.2b). 

I f  a s h e l l  has a p a r t  of the  contour surface f r e e  of connectivity, then 
the  equations of kinematic connectivity, r e su l t i ng  from the  conditions (15.4.b) 
50 ( 1 5 . 4 ~ )w i l l  not degenerate i n t o  equations of geometric connectivity, and 
the  Ostrogradskiy-Hamilton pr inc ip le  W i l l  not be  applicable, a t  l ea s t  not with
out addi t ional  invest igat ion.  

I n  these cases, we may give up t?ie method of reduction based on cmsid
erat ion of six functions of ut a n d a 1  of a point  of the basic  surface of the 
shel l ,  permikting us t o  car ry  the  reduction problem t o  completion; instead, we 
may use approemate representa t iow of the displacement vector  by polynomials 
aryanged i n  powers of z, which were considered i n  Chapter 111 i n  c)ur study of 
reduction met5ods relying on t h e  general equation of dynamics. I n  t h i s  case, 
such d i f f i c u l t i e s  w i l l  not a r i s e ,  since the wave ope ra tw  M appears i n  the  /283
re la t ions  ( 1 5 . 3 ~ ~ )- (l5.3b) as a r e s u l t  of appl ica t ion  of t h e  Lame' equations i n  
order t o  eliminate, from the  expansiorls i n  Taylor tensor series, the  covariant 
deri,vatives of t he  component ul of the second and higher orders with respect 
t o  x" = z. A t  t he  same t i m e ,  i t  can be s ta ted  t h a t  appl icat ion of the Lam6 
equations improves the accuracy of the approximations. 

We will not develop a version of the discrete-continuous method tha t  i s  
not connected with t h e  use of Lam6 equations. 

Section 17. Concluding Remarks 

Chapter I V  covered a group of questions connected with t h e  fundamental 

$5 This statement supplements our paper read a t  t h e  Conference on Shel l  Theory 
a t  Kazan i n  1960 



problem of the s h e l l  theory, which reduces t o  the  construction of a mechanical 
system approximately equivalent, according t o  some cr i te r ion ,  t o  t h e  s h e l l  as 
a three-dimensional e l a s t i c  body. 

As t he  a n a l y t i c ' c r i t e r i o n  of approximate equivalence, we selected t h e  
magnitude of the quadratic deviat ion of some function characterizing t h e  state 
of the  mechanical system t o  be  constructed from t h e  corresponding funct ion 
characterizing t h e  state of the  three-dimensional body, namely, the  she l l .  As 
t he  function we chose the  dens i ty  of t he  Lagrange functions,  the body forces,  
o r  t he  surface forces,  depending on t h e  spec i f ic  problem involved. The solu
t i o n  of various physical problems w a s  unified by the  general requirement t h a t  
these quant i t ies  f o r  the  approximately equivalent system show minimum deviation 
from the  same quant i t ies  f o r  the  three-dimensional body, the shel l .  

Thus, Chapter IV contains the  solut ion of a s e r i e s  of problems of approx
imation functions,  which are r e f l ec t ed  i n  the  mechanics of she l l s .  We have 
therefore a l s o  included i n  Chapter I V  the  first pr inc ip les  of the theory of the  
construction of a discrete-continuous system replacing t h e  she l l ,  and used in
te rpola t ion  formulas t o  f ind  the required approximation. 

I n  meaning, t he  construction of a discrete-continuous system replacing a 
s h e l l  i s  close t o  the f ini te-difference method. 

The proposed method d i f f e r s  from the  f ini te-difference method, however, 
i.1being more exact, since construction of t he  equations of motion i s  based on 
the  operations of in tegra t ion  required f o r  the ca lcu la t ion  of both k i n e t i c  and 
poten t ia l  energy. The operation of in tegra t ion  somewhat smoothes the  e r ro r s  
introduced by the  in te rpola t ion  formulas. One of the  major e r ror  sources s t i l l  
pe r s i s t s ,  namely, the approximation formulas of connectivity t h a t  r e s u l t  from 
the  bouvldary conditions. 

iz shortcoming Qf the  method i s  the complexity of the equations of motion 
and the boundary conditions. The f i e l d  of app l i cab i l i t y  of the  method there
fo re  encompasses a l l  problems where the  use of methods of the Bubnov-Galerkin 
type involves fundamental d i f f i c u l t i e s  i n  constructin3 the  systems of appro,d
maiion functions.  /284. 

An elementary example of such problems i s  the  problem of the  v ibra t ions  
of a rectanqular p l a t e  with mixed conditions on each s ide  of the rectangular 
contour of i t s  middle surface. 

An advantase of t he  method i s  the  s implici ty  of programming i n  calculat ion 
on high-speed e lec t ronic  computers. 
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CHAPTER V 

INTZRAL AND INTEGRO-DIFFERENTIAL FQUATIONS 
OF THE THEDRY OF SHELLS 

Section 1. General Charac te r i s t ics  of t h e  Contents of t h e  
Concluding Chapter 

The l a s t  Chapter contains a discussion of p a r t  of our results i n  the  meth
ods of solving the  boundary conditions of s h e l l  theory, re lying on the  integro
d i f f e r e n t i a l  and i n t e g r a l  equations of the  s t a t i c s  and dynamics of she l l s ,  re
su l t i ng  from the  theorem of work and reciprocity. These s tudies  were begun by 
us i n  1939-1940 and a r e  s t i l l  going on a t  present (Bibl.23b-j). 

During the  past  f i v e  years  the  poss ib i l i t y  of applying the  apparatus of 
in tegro-d i f fe ren t ia l  and i n t e g r a l  equations t o  the  solut ion of boundary prob
l e m s  of the  s h e l l  theory has a t t r ac t ed  the  a t t en t ion  of many workers. Besides 
the  methods indicated above, they have used o ther  methods, based pa r t i cu la r ly  
on the in t eg ra l  r e l a t ions  generalized i n  the  Green formulas of the  theory of 
the  Newtonian poten t ia l  function. Limited space prevent us from giving a de
t a i l e d  analysis  of the  various methods of reducing the boundary problems of t he  
s h e l l  theory t o  equivalent systems of in tegro-d i f fe ren t ia l  and i n t e g r a l  equa
tion+. Many questions of t h e  theory of this reduction, including the  problem 
of equivalence, existence, and uniqueness of the  solut ions of t h e  equations s e t  
up by us  w i l l  not  be exhaustively answered here. W e  intend t o  re turn  to them 
i n  the  second p a r t  of t h i s  book. 

The last Sections of t h i s  Chapter w i l l  contain the in tegro-d i f fe ren t ia l  /286 
and in t eg ra l  equations of the  dynamics of she l l s ,  together  wi th  special  applica
t i o n s  of the  generalized reciprocal theorem proved i n  Chapter 11. 

Section 2. Elementam Solutions of Three-Dimensional Problems of 
E l a s t i c i t y  Theory Containing Singular Points and Lines 

In  the first. Section of t h i s  Chapter we applied the  method of constructing 
in t eg ro -d i f f e ren t i a l  equations of the  s h e l l  theory based on the  introduction of 
solut ions of the three-dimensional problem of e l a s t i c i t y  theory containing sin
g u l a r i t i e s  arranged along a cer ta in  segment of a s t r a i g h t  l ine .  We used t h i s  
method e a r l i e r  (Bib1.23b) i n  1939 - 1940, and w i l l  take the  resu l t s ,  given be
low, from t h a t  work. We s h a l l  consider solut ions with s ingu la r i t i e s  of t he  
three-dimensional s t a t i c  problem of the  theory of e l a s t i c i t y  found f o r  a l i n 
ear ly  deformed medium. 

* During preparation of this work f o r  the press, the  book by D.V.Vaynberg and 
A .L.Sinyavskiy (Bibl.17) appeared which contains a b r i e f  discussion of t he  
method of construction of in tegro-d i f fe ren t ia l  and in t eg ra l  equations of t h e  
s h e l l  theory given by us  and o ther  authors, together w i t h  several  appl icat ions 
t o  the theory of spec i f ic  boundary problems, including the  problems of the equi
l ibrium of cy l indr ica l  notched shel ls .  It a lso  gives (Bib1.17) a bibliography 
which i s  incomplete but s t i l l  deserves a t tent ion.  
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It is  well known t h a t  displacements i n  an unbounded e l a s t i c  medium, due t o  
the  ac t ion  of a s ingle  concentrated force directed along the  axis OY, of a rec
tangular  Cartesian coordinate system y, and applied t o  the  point with coordi
na tes  TIli are of the following f o M :  

q q i( Y j ,  qj) -+ r3 
~ 

a2 


1--v2 m  { 5 - 6 v  2 ( 1  ay; (t)}; 

(i, j, k =  1 ,  2, 3), (if4). 

where 

I f ,  instead of a single force, we apply a t  t he  point M(T, ) the  a r b i t r a r y  
forces  Yk directed along the  coordinate axes, then the  displacements correspond
ing  t o  these forces  w i l l  be expressed by the  equal i t i es :  

The s t r e s ses  corresponding t o  the  displacements (2.la) - (2.lb) have the/287 
form: 

* Cf,, f o r  instance (Bibl.9b) o r  E.Trefftz, Mathematical Theory of m a s t i c i t y ,  
ONTI,  1934, pp.39-40, 
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The a rb i t r a ry  s y s t e m  of forces  Yk applied at  t h e  point M(Vj ) creates  a 
f i e l d  of s t resses  defined by the  equa l i t i e s  

L e t  us now consider t he  expressions f o r  t he  displacement vector components 
6, and the  corresponding s t r e s s  tensor  components i n  a curvi l inear  system of 
coordinates by means of which the  space ins ide  the  s h e l l  i s  arithmetized, under 
specification, a s  indicated below, of the  d i rec t ion  of the  s ingle  concentrated 
force. 

Between the Cartesian coordinates y, and the  i n t e r n a l  curvi l inear  coordi-” 
nates  xi of the  points of t h e  she l l  there exist relat ionships  expressed by the 
formulas of d i r ec t  and inverse transformation: 

x i  =xi(y j j ;  y j  =~5(xi) (i, j= 1, 2, 3j. (2.6 1 

If we put x? = 0, then t h e i r  r e l a t ions  

y i  =y i  ( X I ,  9,0 )  li = 1, 2, 3) (2.7) 

w i l l  be the equations of t he  basic  surface of t he  she l l ,  Below, we will pri
marily consider s h e l l s  of constant thickness. In  t h i s  case, the  bas ic  surface 
w i l l  coincide with the  middle surface, and the boundary surfaces of the  s h e l l  
w i l l  be included i n  the  system of coordinate surfaces. 

Let us  now assume t h a t  a t  some point M of the  s h e l l  a force is applied 
having the  components 

F k  = 6 k
( i )  . I , (2.8) 

directed along t h e  tangent t o  the coordinate l i n e  x~. L e t  us  find i t s  com- /288
ponents i n  the rectangular Cartesian coordinate system yj. Making use of the 
formulas f o r  the  transformation of t h e  contravariant vector components ( I ,  5.5) 
and the  equal i t i es  (2.6), we obtain , 
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The index ( i )  of the force components in the  rectangular system of Cartesian 
coordinates shows t h a t  they are force components directed along a tangent t o  
the  coordinate l i n e  xi of t h e  curvil inear coordinate s y s t e m .  

Equations (2.3), on choice of t he  force determined by eqs.(2.8) - (2.91, 
take the  fo l lowbg form: 

(2.10) 

where v ( i ) j  are the  components of the  vector of the displacements caused i n  the 
e l a s t i c  medium by the concentrated force defined by eqs.(2.8) - (2.9). These 
components express the  displacement vector i n  the rectangular Cartesian mor
dinate system OY,. 

Returning again t o  the coordinate system xi,  l e t  us  find the  covariant 
components u(*) of t h e  vector of displacements caused by the  action of t h e  
force l&. W e  obtain 

(2.11) 

A comparison of eqs.(2.11) wi th  (I, 6.3) shows tha t  the  quant i t ies  u [ , ) ~  
found by us  possess peculiar tensor properties. These quant i t ies  may be con
sidered as covariant components of the vector a t  t h e  point N ( x i  ). But being 
functions of the pa i r  of points M and N, they a re  components of the  covariant 

andtensor of rank two, connected with these point*. Further, from e q ~ ~ ( 2 . 5 )  
(2.9) we find: 

(2.12) 

Again a p p l w g  the  transformation formulas (I, 6.3), we obtain the contra-
var iant  components of the stress tensor in the curvil inear coordinate system = 

~~

* W e  sha l l  not dwell on the analogy between these quant i t ies  and the  so-called 
**intermediatentensor components. Cf.I.Schouten and D.Struik, Introduction t o  
New Methods of Different ia l  Geometry, ONTI, 1939, p.29. 
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connected with t h e  she l l .  

We r e c a l l  t h a t  i n  a rectangular Cartesian coordinate system the  noninvari
a n t  equal i ty  

i s  sa t i s f ied .  

Equations (2.13) show t h a t  t he  quan t i t i e s  aJJ, are components of a th i rd-
rank tensor  of two points. A t  point M, these quan t i t i e s  a re  components of the 
vector  wi th  the  subscr ipts  ( i )  and (p). A t  point N, however, they a r e  compon
ents  of a second-rank tensor. 

Let u s  pass now t o  t h e  construction o f  new solut ions of the  three-
dimensional problem of the  theory of e l a s t i c i t y  w i t h  s ingular i t ies .  The solu
t i o n s  we have considered f o r  the  homogeneous s t a t i c  equations of the e l a s t i c i t y  
theory s a t i s f y  these equations f o r  a l l  values of the  coordinates, except for 
t h e  coordinates of t h e  point of appl icat ion of the concentrated force. T h i s  
point i s  singular. In  it, the  displacements become i n f i n i t e  of the order r-' 
as r -, 0, and the  s t r e s ses  become i n f i n i t e  of the  order f2.  Such s ingular i 
t ies a r e  encountered i n  the  Newtonian poten t ia l  function. On the  b a s i s  of the  
derived solut ions we can f ind a s e r i e s  of new solut ions of the  homogeneous ska
t i c  equations of t he  theory of e l a s t i c i t y  with a continuous d i s t r ibu t ion  of the  
s ingular  points  along a cer ta in  line. 

Let u s  assume t h a t  this l i n e  i s  a segment of a s t r a igh t  l ine ,  of length
2Mh, where M > 1. Let the  coordinates of the  middle of t h i s  segment in t h e  
rectangular Cartesian coordinate system be & ( i  - 1, 2, 3).  Then, the coordi
na tes  of the points  of the  segment can be expressed by the  equal i t ies :  

qi-=ci+ani ( i =  1, 2, 31, (2.14) 

where 
3

C a: = I .  

Here, ai a r e  t h e  d i r ec t ion  cosines of the  segment, and cy i s  the  dis tance from 
the  middle of the  segment with fixed pos i t ive  direct ion.  
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L e t  us d i s t r i b u t e  on this segment the  force load of l i n e a r  densi ty  q(a) ,  
d i rec ted  along one of the  axes of the  l o c a l  coordinate basis. Assume t h a t  i n  
t h e  rectangular Cartesian coordinate system yi ,  the  d i rec t ion  of the  forces  /2qo
q(cr)d(cr) coincides with the  d i r ec t ion  of t he  axis OY, . Then, the  displacements 
caused by these forces  w i l l  be  expressed by the equa l i t i e s  

(2.15) 

where t h e  functions Q t J )  ((Y)a r e  determined by the  r e l a t ions  (2.la) - (2.lb) i f  
the  coordinates of the  point of appl icat ion of t he  forces  a r e  expressed by the  
e q u a l i t i e s  (2.14). 

~ ~ ~The functions w ( s a t i s f y  the  homogeneous s t a t i c  equations of the  elas
t i c i t y  theory f o r  all values of the coordinates, except the coordinates of the  
points  on the  segment bearing t h e  force load. These coordinates are expressed 
by eqsm(2.14). This segment i s  thus a s ingular  l i n e  f o r  the functions w t J )  . 
The load densi ty  can be selected under very wide assumptions r e l a t i v e  t o  t h e  
ana ly t i c  propert ies  of t he  functions q((Y)m 

Consider the  funct ions q ( a )  causing the  l o c a l  perturbations. I n  other  
words, l e t  u s  s e l ec t  a function q(cy) such t h a t  the  displacements and s t r e s ses  
due t o  the  respective load will rapidly at tenuate  wi th  increasing dis tance of 
t he  point N(yi ) from the  segment on which the  load i s  dis t r ibuted.  We s h a l l  
c a l l  such a load a focusing load, since it w i l l  subsequently permit us t o  sep
a r a t e  p a r t  of the wanted f i e l d  of displacement in the  neighborhood of the  sin
gular  l i n e ,  and t o  "liquidate" t h e  residual  . For the  construction of the  fo
cusing load we employ the  method given elsewhere (Bibl.23b). O f  course t h i s  
method cannot be considered optimum, but  we wil l  not fu r the r  discuss  the meth
ods of optimum choice of t he  focusing load. 

F i r s t  l e t  u s  analyze the  conditions whose sa t i s f ac t ion  enables us  t o  repre
sent  the  functions Q(,), (cy) in the  form of s e r i e s  i n  ascending posi t ive powers 
of CY. 

It w i l l  be c l e a r  from eqs0(2. la)  - (2,lb) t h a t  t h e  s ingular i ty  contained 
i n  the  functions k (j, k = 1, 2, 3 )  depends on a f ac to r  of t h e  form r-n The 
question of t h e  p o s s i b i l i t y  of expanding these functions i n  series i n  ascending 
powers of CY tnerefore  reduces t o  an ana lys i s  of the p o s s i b i l i t y  of such expan
sion f o r  the  function f n  . From eqm(2.2) we f ind 

* T h i s  term i s  borrowed from the  book by C.Lanczos "Pract ical  Methods of Applied
Analysis", Fizmatgiz, 1961, p.220. The meaning of this term i s  extended by US. 



or ,  in o ther  words, 

where 

and 

2 ~ - ,COS cp =2r0-a  

-9 .-. 
i s  t h e  doubled scalar product of the  vectors  ro and CY. 

From eq.(d), we f ind  

The expansion of F n ( a )  in a s e r i e s  i n  ascending powers of CY i s  possible 
when the  inequal i ty  

(2.16b ) 

i s  sa t i s f ied ,  or, strengthening the  inequality,  

Hence, we find* 

Here, of course, w e  have taken a posi t ive value forJ2.  The “umvalue ofICY! is Mh. Consequently, a t  the  points  sa t i s fy ing  the condition 

* The esthhate [eq.(2.17)] is  too high; cf. Sect.3. See also M.A.Lavrentfyev 
and B.V.Shabat, Methods of the  Theory of Functions of a Complex Variable, Gos
tekhizdat, 1951, pp.501 - 502. 
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t he  functions 8 (J )  k (CY)can be represented by t h e  convergent series in  ascending 
powers of CY: 

v, k =. 1, 2, 3). 

These series w i l l  absolutely converge f o r  a l l  values of CY ly ing on the  segment 
(-MH, +Mhp. On t he  b a s i s  of eqs.(2.19), t he  functions wc1) defined by /292
eqs.(2.15) can be represented by expansions of t h e  form 

(2.20) 

where the  coef f ic ien ts  m,, are defined by the  formulas 

(2.21) 


L e t  u s  assume a t  first t h a t  the  functions q(o)  a r e  everywhere bounded on 
the  in t e rva l  (a,+Mh) and are continuous, except f o r  a f i n i t e  number of points 
of discont inui ty  of t he  f i r s t  kind. Assume fu r the r  t h a t  on the  continuity in
t e r v a l s  t he  function q (a )  i s  represented by polynomials of  degree N, where N i s  
f o r  t h e  time being an a r b i t r a r y  number. Then, coef f ic ien ts  of these polynom
ials can always be selected such t h a t  the  equa l i t i e s  

I n n  =0 (I2 =0, 1, 2,..., N - 1) 

shall be sa t i s f ied .  

Equations (2.22) form a system of l i n e a r  a lgebraic  equation from which the  
N coef f ic ien ts  of t h e  polynomial representing the  function q ( a )  can be deter
mined i n  terms of the  (N + l)thcoeff ic ient  i f  t he  function q ( a )  i s  continuous 
over t h e  e n t i r e  i n t e rva l  (-Mh, +a).W e  shall consider the  case of the discon
tinuous function q (a )  somewhat l a t e r .  

It follows from eq.(2.21) t h a t  t h e  coeff ic ient  mN i s  of a r e l a t ive  order 
not lower than the  order of t he  quant i ty  (Mh)N+l. Consequently, t he  displace
ments wt1) k defined by eqs. (2.20) w i l l  be of an order not lower than the  order 
of t he  r a t i o  (Mh)N+l :r:+l over the  en t i r e  region in which ro s a t i s f i e s  the  in-

* On absolute and uniform convergence of these expansions, cf., f o r  instance, 
E.T.Whittaker and G.N.Watson, Course i n  Modern Analysis, Vol.11, Gostekhisdat, 
1934, pp. 91-92, 
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equal i ty  (2.17). 

Since, i n  this region, t h e  inequal i ty  

M f i  1-<r,, 2,5 ' 

i s  sa t i s f ied ,  it follows from the  above t h a t  i n  t h i s  region we can construct 
displacements w ( i ) k  which are negl igibly s m a l l  in absolute magnitude. L e t  u s  
inves t iga te  this question i n  more de t a i l ,  considering the  concrete construction 
of a function q(a)  with the above-noted focusing properties. 

Let us  consider the densi ty  nf the  load q(a)  determined over t he  in t e rva l  
(*, + ~ h )as follows: 

a )  the  function q(a)  i s  piecewise-continuous over t h e  interval (-a,+Mh); 

b )  the  function q(m) i s  zero over the  in t e rva l  ( e h ,  +eh); (h - sh,  h + 
+ eh), (-h -e., -h + sh),  where L << 1; 

c )  the  function q(a)  i s  normed by the condition 

Let us denote the  value of t h e  piecewise-continuous 
b t e rva l  (h + sh, Mh) by % ( C Y ) ;over the  in t e rva l  (eh, h 
,the in t e rva l  (-h + ch, -sh) by %(CY);over the  in t e rva l  
9+(4. 


/zq3 

(2.23) 

function q(a)  over t n e  - ch)  by % ( C Y ) ;over 
(-h - ch, -Mh), by 

L e t  us now impose on t h e  functions Q (CY),...,Q ( C Y )  the  condition t h a t  
the  load on the  in t e rva l s  (0, Mh) and (-a,0) be self-balanced: 

a"q (a)da =0; 
0 0 

(n=O, 1 ,  2, . . .  , N) .  

Consider, f o r  example, t he  first group of conditions (2.24). From these 
conditions, it follows t h a t  
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(2.25) 


where pn ( t )  and pn (CY) a r e  ce r t a in  polynomials. 

Assume t h a t  the  function %(a) is assigned. For def ini teness  and cer ta in  
s implif icat ions in the  subsequent calculations,  l e t  us put 

Let us  perform the subs t i tu t ion  of the  var iab les  bringing the  integrat ion 
i n t e r v a l s  i n  eq.(2.25) t o  the  standard i n t e r v a l  (-1, +l). L e t  us  pt 

t=- I 
It (1 -28) (.+ 

1-22E 1.'2 

a=- It (1-2s) (.+
2 1- 2 E  2 1- 2 E  

Let us s e l e c t  the  polynomial pn ( t )  such tha t ,  on this subs t i tu t ion  of the  var
i a b l e  t, it s h a l l  be transformed i n t o  the  Legendre polynomial Pn(z): 

Then the  polynomial &(a) i s  transformed as follows: 

pn(a)=P,(z') =P, (z-
1-2E ) -

Then eq.(2.25) takes t he  following form: 

.r 1 +I 

P,,(:)Q1 ( z ) ~ B = 

-1 -1 
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Equation (2.27) determines the coef f ic ien ts  of the  expansion of the  func
. t i o n  Ql (2) i n  Legendre polynomials, i f ,  a s  already specified, we prescribe the  

function (a). 
Assume t h a t  the  function Ql(z)  can be approximately represented by the  

polynomial GN)(z)of degree N. Then this polynomial will be represented by an 
expansion in Legendre polynomials 

N 
QiN)(zj - BnPn(z), 

n-0  

where 
I 1  

By increasing N i n  formula (2,28), we obtain an i n f i n i t e  sequence of functions
QdN)(2). 

Speaking generally, this sequence can be divergent, but  it always r e t a ins  
a cer ta in  mechanical meaning. Now l e t  us  consider the  load %("(t). Let us 
construct t he  function 

This function may be regarded a s  the  mean value of t he  resu l tan t  of forces with 
a d i s t r ibu t ion  densi ty  q l ( N )  ( t )  applied t o  1/N par t  of the  in t e rva l  over which 
these forces  a r e  dis t r ibuted.  

If there  exists l i m  Pl(N) ( t )  = P ( t )  not  equal t o  zero, then we may a s s e r t  
N

t h a t  t h e  s ingu la r i t i e s  corresponding t o  the  l imi t ing  values o f  t he  densi ty  
(N) ( t  ) are the  result of t he  continuous d i s t r ibu t ion  of concentrated forces  

of f i n i t e  magnitude over t he  in t e rva l  (h + ch, 2h - ch). If l i m  P , (N) ( t )  does 
N- a. 

not  exis t ,  on this in t e rva l  there  a r e  d is t r ibu ted  s ingu la r i t i e s  of the  force 
f i e l d  of the type of force  dipoles, etc.. Thus the  limit of the sequence /295 
QlcN) (2) determines the  s ingu la r i t i e s  of t he  force f i e l d  constructed by us bey
ond the  limits of t h e  interval (-h, +h). 

The function Q(N) ( t)i s  constructed s imilar ly  t o  the  function %(N) ( t )  i f  
t he  function %(cy) i s  prescribed. This exhausts the  question of construction 
of the function q ( a )  over the i n t e r v a l  ( a h ,  +Mh), O f  course, t h i s  extension 
of the  c l a s s  of functions q(cy) demands a corresponding extension of the' i n t e 
g r a b i l i t y  conditions of these functions, We w i l l  not fu r the r  discuss  this ques
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t i on  and w i l l  assume t h a t  t h e  necessarg .&ension of t he  i n t e g r a b i l i t y  condi
t i o n s  can be found, 

Thus, by se lec t ing  t h e  functions 'qa(cy )-and q 3 ( ~) such %hat t he  condition 
(2.23) i s  sa t i s f i ed ,  we can construct the  functkons Q (cy) and (CY),s t a r t i n g  
out from the conditions (2.24). But then, according t o  e q ~ ~ ( 2 . 2 0 )- (2,ZL), 
t he  displacements w C i l k  will vanish beyond the  sphere S of radius  ro > 2.5 Mh, 
I n  t h i s  region external  t o  the  sphere S, t he  s t r e s s e s  corresponding to the  dis
placements w ( ~ ) ~and the  der iva t ives  of those quan t i t i e s  w i l l  a l s o  vanish. With
i n  t h e  sphere S t h e  displacements found by us w i l l  s a t i s f y  t h e  continuity con
d i t i o n s  and the  equations of e l a s t i c i t y  theory everywhere, except on the  l i n e  
on which there  are s ingu la r i t i e s ,  

The densi ty  q(cY) with the  considered propert ies  focuses t h e  f i e l d  of dis
placements and s t r e s s  near t he  segment on which it i s  d is t r ibu ted ,  

If ne i ther  'limQ1(N) (z) nor l i m  Qq CN) (z) exist, then e q ~ ~ ( 2 . 2 2 )w i l l  be 
N-, OJ N + O J  

s a t i s f i e d  only f o r  l imited values of N, In this case, t he  f i e l d  of displace
ments and s t r e s ses  w i l l  not disappear beyond t h e  limits of t h e  sphere s, i,e,,  
t he  focusing propert ies  of the  load q(cy) w i l l  be weakened. T h i s  can apparently 
take place everywhere on condition t h a t  Iq(c~)lis  bounded on the  in t e rva l  (-Mh, 
+Mh), 

I n  conclusion, l e t  us  make an approximate evaluation of the  v a r i a b i l i t y  of 
t h e  displacements wCI,k and of the. corresponding s t r e s ses  in the  neighborhood 
of a segment of t h e  s t r a i g h t  line over'which a load of densi ty  q(a) is  d i s t r i 
buted, L e t  u s  re turn  t o  eqsm(2.1a) - (2.lb). These formulas can be repre
sented in the  following form: 

AB 
B(i)i =-

A 
[C+B cos2(ryl)]; o(i)k =-cos (ryJcos (ryk),..r r (2.30) 

where 

A = - .  1 B= 3 ; c= 9 - 12v 
'2 4 ~ G  2 (1 -v) 2(1 - v ) .  

It follows t h a t  t he  displacement yector  components determined by eqs.(2,30) /a6 
can be represented a s  

(2.31) 

where @(CY)i s  a ce r t a in  bounded function of the  parameter CY, 

O f  course, this function a l so  depends on t h e  coordinates of the  point N(yi ) 
a t  which the displacements a r e  determined and on the  coordinates & of the  ten
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t e r  of the  segment on which the  load i s  placed. 

Further, applying the  theorem of t h e  in t eg ra l  mean, we f ind 

h i, 

a a 


where E l i e s  i n  the  in t e rva l  (a, b). 

If the  point N(yi ) a t  which the  displacements are determined l i e s  outside 
b 

the  l i n e s  bearing the  load, then the in t eg ra l  * r w i l l  be  nonsingular. 
a 

Integrating, we f ind  f r o m  eq. (p), 

(2.32) 

where p = -ro cos cp and r ( a )  and r ( b )  are the  dis tances  from the  respective 
points a and b t o  the  point N(yi ). 

If cp i s  zero o r n ,  then the  point N, a t  which the  displacements w ( l ) k  a r e  
determined, l i e s  on the  s t r a igh t  l i n e  bearing the  load. Two cases must be dis
tinguished here. If the  point N does not l i e  on the  pa r t  of t h e  s t r a igh t  l i n e  
over which the  load i s  dis t r ibuted,  then the  in t e rva l  under consideration, as 
above, will not be singular. 

In the  case where t h e  point N does l i e  on the  in t e rva l  (a, b), this in te 
g ra l  will be improper, bu t  w5th an ex is t ing  Cauchy pr incipal  value. If the  
point N coincides with one end of t he  in t e rva l  (a, b),  then the  in t eg ra l  

daf -will be divergent. A s  w i l l  be seen from eqs.(2.32) and (2.15), a t  these 
aq r  

points  the  functions w ( ~ ) ~have logarithmic features.  

O f  course a l l  these conclusions a re  va l id  only f o r  narrow classes  of func
t ions  q(a), which i n  par t icu lar ,  admit of the application of the  theorem of the  
in t eg ra l  mean. However we can always se lec t  functions 92 (a , )  and (a,) such 
t h a t  t he  conditions of app l i cab i l i t y  of the  theorems of c l a s s i ca l  analysis  will 
be sa t i s f ied .  A s  for t h e  functions %(CY)and &(CY),they l i e  on p a r t s  of the/-” 
s t r a igh t  line running outside the  region filled by the  material of the  shel l ,  
which permits us t o  arrange them more a r b i t r a r i l y  than t h e  functions %(CY)and 
93(a). 
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Consider now t h e  va r i ab i l i t y  of the s t r e s s  tensor components corresponding 
t o  the displacements wcl )k  i n  the neighborhood of a singular line. Equations 
(2.4a) - (2.4d) can be put i n to  the following form: 

q i )  ik =-cos ( r y k )[l +B cos2 (ry,)], (2 .33~) 
r2 

where 

1 - 2 v_ -
A ’ = - 8x(1 - v )  ’ 

It will be seen from eqs.(22.3a) - (2.33d) tha t  the components of the 
stress tensor can be described by the following formula: 

where $ c l ) r s  i s  a function of t h e  parameter cy, and, of course, of the coordi
nates of the point N(yl ) of t h e  s t r e s s  f i e ld  r ,  and of t h e  parameters de
termining t h e  position of the load-carrying segments. 

Applying again t o  t h e  theorem of the integral  mean, l e t  us  consider the 
in tegra l  

The meaning of the notation here used will be clear  from the above exposition. 

The integral  s-dcy 
i s  nonsingular i f  the point N(y, ) l i e s  outside the 

a 2 
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- -  

s t r a i g h t  l i n e  bearing t h e  load q(a) o r  l i es  on a pa r t  of the  s t r a igh t  l i n e  f r e e  
from load. If the  point N(yi ) l i es  on a segment of the  s t r a i g h t  l i n e  over 
which the  load i s  d is t r ibu ted  with a dens i ty  q(a), then this in t eg ra l  w i l l  be 
improper and divergent. 

Assuming a t  first t h a t  the  point N(yi  ) l i e s  outs ide the  segment of the  
s t r a i g h t  line on which the  function q(a) d i f f e r s  from zero, we f ind from eq. 
t h a t  

h 

t an- 1--
0 - I-, cos 'p 

- t a n  
- 1 n --- rocos cp 

-
r0sin 'p Yo sin cp (2.35) 

This equal i ty  confirms the  above asser t ions  on the propert ies  of the in
t e g r a l  under consideration, i f  we inves t iga te  the l i m i t  passage of the point 
N(yi ) on the s t r a igh t  l i n e  bearing the  load. In  par t icu lar ,  when the  point 
N(yi ) approaches t h e  segment wi th  the  nonzero load densi ty  q ( c y ) ,  t he  in t eg ra l  
(9)  increases without l i m i t ,  but  not more rapidly than the function r-' a s  
r - 0. 

All the  above es tab l i shes  the propert ies  of v a r i a b i l i t y  of the s t r e s s  
f i e l d  corresponding t o  the  displacements w ( i ) k  (htermined by ~ ~ ~ ( 2 . 1 5 )i n  the 
neighborhood of the s ingular  l i n e  bearing the  load of densi ty  q(cy). We empha
s i z e  again tha t  the  ana lys i s  given here by no means exhausts all propert ies  of 
the  displacement f i e l d s  w ( i ) k  and of the corresponding s t r e s s  f i e lds ,  s ince it 
has been performed under simplified ideas  a s  t o  the ana ly t ic  propert ies  of the  
function q(cr ). 

Section 3. 	 In tegrodi f fe ren t ia l  and In tegra l  Equations of the 
S t a t i c s  of Shells.  w i th  Focusing Kernels 

We give below a method of solving the  boundary problems of s t a t i c s  of 
she l l s ,  re lying on t h e  theorem of work and reciproci ty  (11, Sect.12). We will 
confine the  discussion f o r  the time being t o  the  formulation of t h i s  theorem, 
known from the  l i n e a r  theory of e l a s t i c i ty .  The e n t i r e  method can be consi
dered as a development of the well-known method of Somiglianox-. 

It i s  well known t h a t  the  theorem of work and reciproci ty ,  o r  the  Recipro
c a l  Theorem, makes it possible t o  es tab l i sh  an in t e r r e l a t ion  between two f i e l d s  
of  displacements and Stresses  induced i n  an e l a s t i c  body by two systems o f  
forces  applied t o  it. We sha l l  dis t inguish the main and auxi l ia ry  f i e l d s  of 
displacements, s t resses ,  and forces. 

-

* A.Love, Mathematical Theory of Elas t ic i ty ,  ONTI, 1935. 



W e  w i l l  apply the  term *%basic" t o  the  f i e l d s  of displacements and stresses 
due t o  a load ac t ing  on t h e  she l l  i n  accordance with the  conditions of t he  
boundary problem t o  be considered. These f i e l d s  are usual ly  unknown and must 
be determined. The notat ion of t h e  components of t h e  vector of basic  displace
ments and the components of t he  tensor  of bas ic  stresses are known from the  
earlier Chapters of this book. 

L e t  us  pass t o  the  consideration of t h e  awdliarydisplacement  and stress 
f i e l d s  and t o  the  corresponding surface and body forces. Let us again con- /299 
s ide r  an unbounded e l a s t i c  medium and imagine t h a t  part of t h i s  medium i s  t h e  
s h e l l  we a r e  studying. L e t  the  unbounded mediumbe under t h e  act ion of forces  
applied t o  a cer ta in  segment (-Mh, +Mh) of a s t r a igh t  l i n e  i n  the manner indi
cated i n  the preceding Section. 

Let us d i r e c t  t h e  segment (-Mh, +Mh) of the  load-carrying s t r a igh t  l i n e  
along the normal t o  the  middle surface of the  she l l ,  L e t  u s  assume t h a t  a 
point lying on t h e  middle surface corresponds t o  the  zero value of the  pa-Iame
t e r  cy on the load-carrying segment. 

Let us fu r the r  assme t h a t  t he  d i s t r ibu t ion  densi ty  of the loads q(w) i s  
determined by conditions ( a )  and (b)  of t he  preceding Section, and a l s o  t h a t  it 
satisfies eqs.(2.23) - (2.24). Under these conditions, two segments of t he  
s ingular  l ine on which the  function q(u)  does not  vanish will l i e  inside the  
shell .  We note t h a t  under conditions (a )  and (b)  of the  preceding Section the  
load-carrying segments do not i n t e r sec t  the  middle surface nor the  boundary 
surfaces of the  shel l .  These surfaces are free from singular  points both of 
t he  displacement f i e l d  and of t h e  stress f i e l d  caused by the  load d is t r ibu ted  
on the  singular l ine .  

Let us  assum2 t h a t  t he  forces  applied t o  the  singular l i n e  are directed 
along the  vector ei of t he  l o c a l  coordinate bases, where t h e  indzx i i s  fixed. 
W e  r e c a l l  tha t ,  under the  assumptions adopted by us, t he  vector e directed 
along the  norm& t o  the  undefomned middle-surface has the  same di rec t ion  as t h e  
segment of the  s t r a igh t  1b.e bearing the  load. 

W e  s h a l l  apply t h e  term "auxiliary" t o  those f i e l d s  of displacements and 
stresses created both i n  the  shel l ,  and i n  a pa r t  of t he  unbounded e l a s t i c  me-
d i m ,  by t h e  load of the above-mentioned s ingular  l ine .  For these f i e l d s  t o  
e x i s t  i n  a she l l  cut  out of the  unbounded e l a s t i c  medium, a system of surface 
forces, determined from the  known s t r e s ses  by the  formulas (11, 8.2a - 8.2b), 
must be applied t o  the  shel l .  

The surface forces  so found, together with the  forces  d is t r ibu ted  on t h a t  
pa r t  of the  s ingular  l i n e  ly ing  within the  shel l ,  form the  system of auxi l ia ry  
loads. 

L e t  u s  consider the  ana ly t ic  expressions f o r  t he  auxiliarg displacements 
i n  the  curvi l inear  system of coordinates x1 connected with the  shell .  

To avoid d i f f i c u l t i e s  i n  determining the  f i e l d  of auxiliary displacements 
in the  curvi l inear  coordinate s y s t e m ,  l e t  u s  first use a rectangular Cartesian 



coordinate s y s t e m ,  and then apply the  formulas of transformation of the  compon
e n t s  of tensor  quant i t ies .  

We s h a l l  r e t a i n  the  e a r l i e r  notat ion f o r  t h e  load dens i ty  q(CY). The vec
t o r  os t he  corresponding force i s  d i rec ted  along the tangents t o  the  coordinate 
l i n e  e, of t he  curv i l inear  coordinate s y s t e m .  L e t  u s  f ind  the  components of/300 
the  vector dens i ty  of the load q(J)(CY)i n  t h i s  system: 

q j  (a )== q (2)2; (i, j =1, 2,3). (3.1 1 

Passing t o  rectangular Cartesian coordinates, we obtain a r e l a t ion  analo
gous t o  eq.(2.9) f o r  the  vector densi ty  components: 

The f i e l d  of displacements due t o  the  load wi th  the  vector densi ty  pt i )k  x 
X(CY)  i n  the  rectangular Cartesian coordinates will be determined by fonmlas  

analogous t o  eqs.(2.10) and (2.15): 

( 3 . 3 )  

(i, j =1, 2, 3). 

Let us  re turn  now t o  the  curvi l inear  coordinates. The covariant compon
en t s  of t h e  vector of auxi l ia ry  displacements a re  expressed by an equal i ty  anal
ogous t o  the  r e l a t ion  (2.11): 

(3.4) 


(i, j ,  12, p =; 1, 2, 3). 

The signs of swmnation over k and p a r e  omitted. 

Equation (3.4) can be simplified by using a moving Cartesian system of co
ordinates  and assuming t h a t  the  a x i s  OY, coincides with the  s t r a igh t  l i n e  bear
ing the  load, directed,  as already stated,  along the normal t o  the  undeformed 
middle surface, Le., along the coordinate l i n e  3 of the  curvi l inear  coordi
nate  s y s t e m .  I n  this case, 
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and eq.(3.4) takes  the  following form: 

(3.5 1 

T h i s  expression of aux i l i a ry  displacements i s  not  invariant ;  the diaplace
ments w ( J ) k  a r e  defined by e q ~ ~ ( 2 . 1 5 ) .  The expressions of the  stress tensor  
components and of the  components of the  surface forces  defined according t o  /3Ol
t h e  components vci)  from Hookefs l a w  w i l l  not be given hare. 

Applying the Reciprocal Theorem t o  the  bas ic  and auxi l ia ry  systems of d is 
placements and loads, we f ind  

+ h  

( 3 . 6 )  

where the  SJ(,)denote the  components of the auxi l ia rg  surface forces, XJ and FJ 
a r e  the  components of t he  surface and body forces  of the  bas ic  system, w h i l e  u, 
a r e  the covariant components of the  vector of the pr inc ipa l  displacement. The 

i n t e g r a l s  JJ extend over the  boundary and contour surfaces  of the  s h e l l  and 
(SI 

t h e  in t eg ra l s  lJ[ extend over i t s  volume. 
I V) 

The expression 

-

-hs"q (a)ui (3)da =ui (.d) (j= 1, 2) 
(3.7) 

can be regarded the  average value, with the weight q(cr), of t h e  displacement 
vector components q. This quant i ty  i s  a function of the  coordinates of t he  
point M(xJ) intersected by t h e  s t r a i g h t  line bearing the  auxiliary load, and 
t h e  middle surface of t he  shel l .  
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In connection with eq. (2.23) t h e  quan t i t i e s  < can be conventionally re
garded as components of  t he  displacements of  t h e  two-dimensional continuum stu
died i n  the  s h e l l  theory. 

The function q ( m )  can always be taken such t h a t  t h e  condition 

will be sa t i s f ied ,  where q(”’(x*) are t h e  displacements of  t he  point & (x*) ly
ing  on the  middle surface, and A i s  a constant. 

The condition ( 3 . 8 )  assures the  poss ib i l i t y  of an approximate subst i tut ion 
of the  in t eg ra l  (3.7), Le., of  t he  averaged displacements &, by the  displace
ments up) of the  middle surface of t he  shel l .  This solves pa r t  of t he  general 
problem of reduction of the  three-dimensional problem of the  theory of elasti
c i t y  t o  the  two-dimensional problem of the  theory of shells.  

We sha l l  now indica te  an elementary method of constructing the  function 
q(cy) permitting us t o  s a t i s f y  condition (3.8). Assume t h a t  t he  displacement 
u, (cy) can be approximated by the  polyonomial: 

Then, the averaged displacements ( a )  can be represented i n  the  form: 

where 

cyJ are t h e  posi t ive powers f t he  parameter a (but n 
contravariant vector1 ). 

( 3 . 9 )  
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(3.10) 


(3.11) 


t of  the  component of the  

On the  bas i s  of t he  propert ies  of  the  function q(cy), considered i n  Sect.2, 
l e t  us se lec t  the  functions a,( c y )  and q, (cy) in t h e  form of polynomials such 
t h a t  t he  conditions 

J1 1 .  =z0 ( j  = 1, 2,..., N ) .  (3.12) 

s h a l l  be sat isf ied.  

If 	we confine ourselves t o  the  r e l a t i v e  accuracy adopted i n  the  c l a s s i ca l  
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theory and i n  Chapter I11 of this book in s e t t i n g  up t h e  system of d i f f e r e n t i a l  
equations of motion of an element of t he  shel l ,  then it is  su f f i c i en t  to put 

L e t  u s  construct the  polynomials 9, (a)and g, (w) such t h a t  t he  functions 
q(w) s h a l l  be even over t he  in t e rva l  (-h, +h). I n  this case, even under condi
t i o n  (3.13) i n  the  right-hand s ide  of eq,(3.10), we sha l l  have nonvanishing co
e f f i c i e n t s  f o r  the  terms containing h5 and higher orders of h, and the coeffi
c i en t s  of u y ’ w i l l  a l so  be nonvanishing. It i s  not  hard t o  see t h a t  f o r  this 
it i s  su f f i c i en t  t o  put 

a n
q2(a)=a,+2a; q3(a)= n o - 2a. (3.14)h A 

For def ini teness  we s h a l l  assume that the parameter e i n  the conditions(a) 
and (b)  imposed on the  function q(w) i n  Sect.2 i s  0.25. Then, we obtain 

All the  coef f ic ien ts  of the  nJ wi th  odd indicesjvanish ident ical ly .  Equat
ing t h e  coeff ic ient  Q ,  according t o  the  condition (2.23), t o  unity, and the  /303 
coeff ic ient  m, t o  zero, we f ind the  coef f ic ien ts  a, and a,, Equation (3.14) 
takes  the following form: 

W e  f ind the functions %(cy) and %(cy) from 
selves  t o  t h e i r  approximate representation 

W e  also note t h a t  this elementary method of constructing the  functions q(m) 
involves ana ly t ic  r e s t r i c t i o n s  imposed on the  components u, of the  displacement 
vector. These r e s t r i c t i o n s  are expressed by t h e  assumption t h a t  an approximate 

305 



representation of these components by polynomials according t o  eq.(3.9) i s  pos
s ible .  O f  course, by employing more general methods of constructing the  func
t i o n s  q(a,) than those j u s t  described, we should be able  t o  eliminate the  redun
dant ana ly t ic  r e s t r i c t i o n s  imposed on the  displacement vector components q. W e  
will not  d i r e c t  our inves t iga t ions  d o n g  t h i s  l i n e  and r a the r  confine ourselves 
t o  a result of t he  same r e l a t i v e  accuracy as that given i n  Chapter 111. The 
approximate r e l a t ion  (3.9) will enable u s  then t o  obtain a number of re levant  
conclusions by r a the r  elementary means. 

Let u s  re turn  t o  eq.(3.6). Since we can now approximately put 

we f ind  from eq.(3.6) 

(i, j =  1, 2, 3j. 

where the  superscr ipts  (0) show tha t  the auxi l ia ry  system of displacements cor- * 

responds t o  the’ load on the s ingular  l i ne ,  necessary t o  determine t h e  coeffi
c ien ts  q(’). 

We s h a l l  now show t h a t  by varying the function q(a) w e  can, t o  within re
quired accuracy, f ind the  coef f ic ien ts  I$) ,q@)etc . ,  without having t o  d i f 
f e ren t i a t e  eqs. (3.9). 

Indeed, f o r  determining the coeff ic ient  q”)with the  necessary accuracy,it 
i s  su f f i c i en t  t o  take t h e  functions Q (a,) and 93 (a,) as follows: 

q2(a) = q3(a) =ala + a3a3 (3.18) 

and t o  determine the  coef f ic ien ts  al and a, from the  conditions 

I n  this case, a l l  coe f f i c i en t s ’o f  nJ with even subscr ipts  j vanish. /304 
Putting, as before, e = 0.25, we f ind the  coef f ic ien ts  a, and a, from con

d i t i o n s  (3.19). The functions Q (a,) and g, (cy) w i l l  be of the  form 

(3.20) 



The coef f ic ien t  4’) will be determined by the following equation resu l t ing  
from eq. (3.6): 

( i ,  j = l ,  2, 3). 

where the  index (1)has a meaning s imi la r  t o  t h a t  of the  superscript  (0)  in 
eq. (3.17). 

Obviously, f o r  an a r b i t r a r y  coef f ic ien t  ulk), a f t e r  a su i tab le  select ion 
of t h e  function q(cy), we can s e t  up the  equation 

(i, j==1, 2, 3;  /2=0 1, 2 , .  . . , N ) .  

It i s  not d i f f i c u l t  t o  prove t h a t  e q ~ ~ ( 3 . 2 2 )y ie ld  a new solut ion of the  
problem of  reduction of t he  three-dimensional problems of the  s t a t i c s  of an 
e l a s t i c  body t o  the  two-dimensional problems of s h e l l  theory. This solution 
does not  require sa t i s f ac t ion  of  the condition t h a t  t h e  components of the vec
t o r s  of the forces  ac t ing  on the  s h e l l  be d i f fe ren t iab le .  We w i l l  explain the 
d e t a i l s  of the  new reduction method below, 

L e t  u s  study the  in t eg ra l s  on the right-hand s ides  of eqs.(3.17), (3,2l), 
dVand (3.22). The in t eg ra l s  of the  form sss F ~ V ’ ! ~ ’ .should be considered asw i  


f VI 
prescribed functions of the coordinates of the  Roint M(x* >,Le. ,  as the  points
of in te rsec t ion  between the  s t r a igh t  l i n e  bearing the addi t iona l  load and the  

middle surface. The i n t e g r a l s  Jl over the  surface S of the  s h e l l  can be 
(S) 

represented i n  the form of sums of in t eg ra l s  over the  boundary surfaces S of 
the s h e l l  and i t s  contour surface S,. Since the  load on the  boundary sur$%es 

of the  s h e l l  i s  usual ly  known, the  in t eg ra l s  of t h e  form JJX’v;$dS,,  where the 
121 

sign (+) has been introduced instead of t h e  symbol S(*) t o  shorten the  fonmilas, 

must be considered known functions. The i n t e g r a l s  JJ S;i”,’jri,dS contain the/305 
(! 1 

covariant components of the  required displacements on the  boundary surfaces of 
the  she l l ,  Finally, the  in t eg ra l s  over t h e  contour surface S, of the s h e l l  de
termine known and unknown functions. 
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W i 
The in t eg ra l  	1sX j g W  dS 
is  a known function, if the  forces  ac t ing  on the  

‘SC1 

contour surface a r e  prescribed. Usually the  forces  ac t ing  on the  part of the 
contour surface t h a t  is free from connectivity are known. On the  p a r t s  of the  
contour surface with connectivity these fo rces  are unknown, and the  correspond

ing  pa r t  of the in t eg ra l  JsXjv$j  dS will contain der iva t ives  of the  compon
‘S, 1 

e n t s  of the  required displacements of t he  points  of the  contour surface. Simi

larly, the in t eg ra l  	 JJS{,k,)jujdS i s  decomposed i n t o  two parts. That pa r t  of 
‘SC ) 

the  in t eg ra l  taken over t he  region of the  contour surface wi th  prescribed dis
placement components i s  a h o v m  function. The other  p a r t  of t h i s  i n t e g r a l  con
t a i n s  components of t he  displacement sought. 

On the bas i s  of the propert ies  of the auxi l ia ry  displacements considered 
i n  Sect.2, it can be asser ted t h a t  the  surface i n t e g r a l s  w i l l  not be s ingular  
if the point M(xj ) does not l i e  on the  contour surface. If the  point M(xj ) 
does l i e  on the  contour surface, then these in t eg ra l s  w i l l  be improper, bu t  
convergent. The volume in t eg ra l  w i l l  l ikewise be improper but  convergent. 

Bearing a l l  t he  above i n  mind, l e t  us  now introduce the  notation 

-JJS;?,)’u;dS (i, r = l ,  2,3 ; j = l ,  2;k = 0 ,  I ,  2, . . . ,  N ) ;  
(11) 

(3.23 1 

where dj i s  the in t eg ra l  over t h a t  pa r t  of t h e  contour surface with pre
( 1 )  r f  

scribed components of the forces of the bas ic  system, and . l J  i s  the in te 
(11) 

g r a l  over t h a t  p a r t  of the contour surface with the  prescribed components of 
displacement of the  bas ic  system. Then, eqs.(3.22) take the  form: 

(i, I ’ =  1, 2, 3; j= 1, 2;k = O ,  1, 2,. .  . , N ) ,  
( 3 .24 )  

and enable u s  t o  f ind the  approximate expression f o r  t h e  displacement vector 
components a t  an a r b i t r a r y  point of the  shel l .  



Making use of eq.(3.9), after subs t i tu t ing  the  parameter cy by the  coordi
nate  z, we obtain 

(i, 1’=1, 2, 3; j=1,  2). 

(3.25) 

The equal i t ies  (3.25 ) are approximate and noninvariant. The l a t t e r  state
ment i s  connected with the  f a c t  t h a t  t h e  sca la r  products i n  these equa l i t i e s  
cannot be considered as absolute scalars.  The propert ies  of  t h e  i n t eg ra l s  en
t e r ing  in to  eqs.(3.25) have already been discussed. 

Thus, f o r  an approximate determination of the  f i e l d  of displacements i n  
the  s h e l l  we must f ind the  components of the displacements sought on the  boun
dary surfaces of the  s h e l l  and on pa r t  ( I )  of t h e  contour surface, as w e l l  as 
the  components of t h e  bas ic  s y s t e m  of forces  on pa r t  (11) of the  contour sur
face. 

To solve the  problem, we mus t  set up equations i n  the  above unknowns. Sev
eral  versions f o r  constructing the  required systems of equations may be given. 
We confine ourselves i n  t h i s  Section t o  two versions. 

1. Let u s  put z = fi h i n  eq.(3.25). Introduce the  notation 

Then, from eq.(3.25), we f ind the  following system of in tegrodi f fe ren t ia l  equa
t ions:  
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(i, r = l ,  2,3; j - 1, 2). 
(3.2% 1 

Let us  now assume t h a t  the  s y s t e m  of auxiliary displacements i s  due t o  t h e  
act ion of the  focusing load considered i n  Sect.2. Let the  point M(xJ, 0) on 
the  middle surface l i e  outside the  zone of width 2.5 Mh bordering i t s  contour. 
Then, i n  eqs.(2,27a) - (3.2%) we may omit the  i n t e g r a l s  over the  contour sur
face of t h e  s h e l l ,  and confine the  integrat ion region i n  the in t eg ra l s  over the  
boundary surfaces t o  the  region ly ing  w i t h i n  the c i r cu la r  cylinder of radius  
2 Mh, with i t s  axis coinciding wi th  the  s t r a igh t  l i n e  bearing the load of den
s i t y  q(cu). 

The system of equations (3.2%) - (3.2%) is now simplified and takes  the 
form: 

(i, Y =  1, 2,3; j =  1, 2). 

where the regions of in tegra t ion  (+ )  and (-) a r e  bounded as noted above. 

L e t  u s  assume t h a t  the point H(x' ) l i e s  in the  zone of width 2 Mh border
ing  the contour of the  middle surface. Then, i n  the  in t eg ra l s  over the  contour 
surfaces we must r e t a i n  only the  parts t h a t  correspond t o  the  integrat ion over 
t he  region enclosed within the  c i r cu la r  cylinder having a radius 2 and an 
a x i s  coinciding with the  s t r a igh t  l i n e  bearing a load of densi ty  q(cr)o 



I 

Thus the  appl icat ion of the  focusing load permits u s  t o  r e s t r i c t  t he  inte
grat ion region t o  r e l a t i v e l y  small regions with movable boundaries, varying 
t h e i r  posi t ion on displacement of the  point M(x1 ) over the  middle surface of 
the  shel l .  I n  the  following Section, w-e make use of equations with t h e  inte
grat ion regions r e s t r i c t e d  in this manner. 

2. Let us now consider the  second method of s e t t i n g  up the  system of inte
grodi f fe ren t ia l  equations based on the  appl icat ion of eqs.  (3.9) and (3.24). As
sume t h a t  t he  right-hand s ide  of e ~ ~ ( 3 . 9 )contains an expression ensuring the  
approximate displacement of t he  vector  u, t o  the  middle surface of the  shell .  
W e  note t h a t  t he  elements of area on the  boundary surfaces and on the  middle 
surface are connected by the  r e l a t ions  

where dS{*) a r e  elements of area of the  boundary surfaces, dS i s  an element of 
area of t he  middle surface, and k, a r e  t h e  pr incipal  curvatures of the  middle 
surf ace. 

Making use of the  approximation equation (3.9), l e t  u s  represent the con
ponents of t h e  surface forces  in the  region (11)of the  contour surface by the 
expansions 

Based on the  approximate e q ~ ~ ( 3 . 9 )and (3.30) and on eq.(3.29), we give 
eqs. (3.24) t h e  following form: 

where t h e  i n t e g r a l s  and a r e  taken over those parts of the  contour of 
( 1 )  (11)  

t he  middle surfaces of t he  s h e l l  ly ing  i n  regions ( I )  and (11)of the  contour 
surface; t he  components FLg am equal t o  the  vector  components S o )  on the  
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boundary surface z = +h, which vector  has undergone p a r a l l e l  displacement t o  
t h e  middle surface; t he  components TI!{' are equal t o - t h e  vector components 

S$]'r on t h e  boundary surface z = -h, which vector has undergone p a r a l l e l  dis
placement t o  the  middle surface+!-. /309 

Let us introduce the  notation: 

-h -h (3.32a) 

Then, we obtain from eq.(3.31): 

(3.33 

The  signs of summation over (...p) are omitted. 

Equations (3.33) must be regarded as a s y s t e m  of in tegrodi f fe ren t ia l  equa
t i o n s  with unknown functions q c k )  of a point of t h e  middle surfaces of the shell .  
These equations are the  in t eg ra l  analogs of t he  d i f f e r e n t i a l  equations consi
dered i n  Chapter 111. 

There is, however, a substant ia l  difference between eqso(3.33) and the 
equations of Chapter 111. This difference l i e s  i n  the  f a c t  t h a t  eqs.(3.33) do 
not contain the  d i f f e ren t i a t ion  operation f o r  t he  components of the vector 
forces  ac t ing  on the shell .  Consequently, these equations remain va l id  even i n  
cases where concentrated forces  are applied t o  the  boundarg surfaces of the  
shell .  Obviously, this remark a l so  appl ies  t o  eqsO(3.27a) -* (3.2%). 

Now l e t  us  assume, as above, t h a t  the load on the  singular l i n e  i s  focus
ing. Then, outside of the s t r i p  of wid.th 2.5 Mh bordering the contour of the 
middle surface of the  shel l ,  e q ~ ~ ( 3 . 3 3 )w i l l  be of the  following form: 

* We have taken advantage of t he  f ac t  t ha t  t h e  sca la r  product does not vary un
der  pa ra l l e l  displacement, and t h i s  operation can be performed by separately 
displacing the  cofactors (I, Sect.lO.1). 
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B 

i 

(i, r = l ,  2, 3; j = 1 ,  2; k, p = o ,  1, 2 , - - - 1  N )  

where t h e  region (C)  l i es  within a c i r cu la r  cylinder of radius 2.5 Mh and a x i s  
coinciding with the  s t r a igh t  l ine bearing the  load of densi ty  q(a). 

If  t h e  point M ( x l )  of in te rsec t ion  between the  middle surface and t h e  / 3 l O
load-carrying s t r a igh t  l i n e  l i e s  i n  the  s t r i p  of width 2.5 Mh bordering t h e  con
tour  of t he  middle surface, then the  integrat ion region (C) and the  segments of 
a r c  of the  contour t o  which the  curvi l inear  integrals enter ing i n t o  eqs.(3.33) 
extend must be r e s t r i c t ed  t o  t h e  inside of t he  c i r cu la r  cylinder having a radi
u s  2.5 Mh and an axis coinciding with the  s t r a igh t  l i n e  bearing the load q(cu). 

The equations of t he  form (3.34) a re  close in t h e i r  mechanical meaning t o  
the  d i f f e r e n t i a l  equations of Chapter 111, since they describe t h e  mechanical 
s t a t e  of a small but  f in i te  pa r t  of the  shel l ,  while the  d i f f e r e n t i a l  equations 
describe the  state of an element of the shell .  It can be predicted tha t ,  by 
modifying the s t ructure  of t he  focusing load and passing t o  the  l i m i t ,  we w i l l  
be able  t o  f ind the  d i f f e r e n t i a l  equations of equilibrium from equations analo
gous t o  eqs.(3.34). 

Several concluding statements a re  made below: 

a )  The preceding conclusions were based on the  assumption of existence of 
a focusing load constructed by t h e  method given i n  Sect.2. We s h a l l  not inves
t i g a t e  t h i s  question fur ther ,  since t h i s  involves several  problems of mathemat
i c a l  analysis  of the  same nature  a s  the  c l a s s i ca l  problem of moments-. These 
problems cannot be discussed here and w i l l  be taken up i n  the  second volume of 
t h i s  book. However, i n  Sect.9 we w i l l  give one of the  other  possible methods 
of constructing a focusing load, which involves no fundamental d i f f icu l t ies ,es 
pecial ly  questions of existence. 

b )  I n  se t t i ng  up the  i n t e g r a l  equations (3.28a) - (3.2823) and (3.34), we 
r e s t r i c t ed  the region of in tegra t ion  t o  in t eg ra l s  containing the  wanted func
tions.  The same r e s t r i c t i o n  of the  integrat ion regions can be carr ied out i n  
the  in t eg ra l s  containing the  prescribed functions. These in t eg ra l s  en ter  i n t o  
the right-hand s ide of eq. (3.23). 

It is, however, necessary t o  determine f i r s t  whether there  a r e  in t eg ra l s  
over a region external  t o  (C)  and dominant r e l a t i v e  t o  the  in t eg ra l s  over t he  
region (Z). This case may occur, f o r  example, i f  prescribed ex te r io r  forces  
a r e  absent from the  regions (E). Then, of course, t he  r e s t r i c t i o n  of t he  inte
gration region of i n t eg ra l s  containing the  prescribed functions t o  the  regior! 
(C) cannot be applied. 

c )  muat ions  (3.28a) - (3.28b) and (3.34) are in t eg ra l  equations with var
i ab le  integrat ion limits, which are functions of t h e  point M ( d  ) of intersec
t i o n  of t h e  s t r a igh t  l i n e  bearing the  load q(a)with t h e  middle surface of t he  
shell .  

-2 N.1 .Akhiyeaer, The Classical  Problems of Moments. Fizmatgiz, 1961. 
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On displacement of t he  point M ( d  ) over the  middle surface, t h e  region@) 
will cover the  e n t i r e  middle surface. In the  boundary s t r i p  of width 2.5 Mh 
bordering the  contour of  the  middle surface, the  contour in t eg ra l s  enter i n t o  
t h e  equations, as already noted. 

d )  If the  focusing load i s  constructed approximately, eqs.(3.28a) - (3.28b) 
and (3.34) should be considered as approximate. If t h e  focusing load i s  con
structed with suf f ic ien t  accuracy, it will be possible t o  re f ine  the  value of 
t h e  radius r, of the  sphere which d i s sec t s  t he  region (T) on the  middle surface 
of t h e  shell .  For t h i s  purpose, and on the  b a s i s  of elementary geometrical con
siderations,  eq. (2.16b) must be changed t o  read 

where I$&-, is  the  minimum radius of curvature of t h e  middle surface i n  the  vi
c i n i t y  of the  point pi(xl). Then, instead of t h e  inequal i ty  r, > 2.51.11 we f ind 

(3.35) 

and s ince ]@Imax = Mh, we obtain 

1 M h  
TQ zhllz (1 f- ----+ .. . (3.36 )

2 R m i n  

e )  Appiication of focusing kernels, which i s  the  foundation f o r  construct
ing  eqs0(3.28a) - (3.28b) and (3.34), leads t o  the  conclusion t h a t  the boundary 
conditions have only a weak influence on the  s t ress -s t ra in  s t a t e  of the  s h e l l  
a t  points  su f f i c i en t ly  d i s t a n t  from the  contour of the  middle surface. 

O f  course, t h e  influence of the  boundary conditions i s  not confined t o  t h e  
s t r i p  of width 2.5 Mh o r  t o  a narrower s t r i p  i n  accordance with the  inequal i ty
(3.36), since when the  point M(xi)goes beyond the  boundary of t h i s  s t r i p ,  the 
region (C)  can include part of t h e  bordering s t r ip .  For t h i s  reason, the  in
fluence of the boundary conditions i s  ref lected on t h e  s t ress-s t ra in  s t a t e  of 
t he  e n t i r e  shell .  However, the s t ructure  of the  above-derived equations permits 
t he  conclusion tha t  t he  influence of the boundary conditions i s  weakened with 
increasing distance of t he  point M(x‘ ) from the contour of the  middle surface. 

Section 4. 	 Methods of Approximate Solution of a System of In tegra l  
Eauations of She l l  Theorv 

We r e c a l l  t h a t  the  approximate methods of solution of a system of in t eg ra l  
equations i s  most of ten  based on approximate subst i tut ion of these systems by 
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systems of algebraic equations, Use of focusing new kernels  permits r e s t r i c t 
ing  the  number of unknowns enter ing i n t o  the  algebraic  equations approximately 
equivalent t o  the  in t eg ra l  equations. We will give one of the  possible methods 
of s e t t i n g  up these equations. 

Le t  u s  first consider t h e  approximate representation of a cer ta in  func- /312 
t i o n  ~ ( 5 ,1)within the  rectangle MI(x + a, y + b),  & (x - a, y + b), M3 (x -- a, y - b) ,  h ( x  + a, y - b) ,  assuming t h a t  ce r t a in  of i t s  values ~(x,y), 

yu)(x - a, y), cp(x + a, y), co(x, y - S), ( ~ ( x ,  + b )  are known. Then, in te r 
polating the  function cp(5, ? )  by a paraboloid, we obtain 

To shorten the  formulas, l e t  us introduce the  following notation: 

The absolute values of t he  coordinate increments will be denoted by h j ( j  = 
= 1, 2). 

L e t  us return t o  the  system of equations (3.214)~ The r e l a t ive  smallness 
of t he  integrat ion region (X) permits u s  t o  represent the  integrand functions 
by interpolat ion polynomials of the  form of eq.(4.1), assuming the  region ( C )  
t o  be bounded by the  rectangle M,&F&& o r  t o  l i e  ins ide  it. Using the nota
t i o n  (4 ,Z) ,  we obtain 

I/(:)(0,0)-i- ujf" (0,0)JJ I(\:;;(0,ti)(is+ 
iL] 

n I .  
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(i, r =  1 ,  2,3; j = =1, 2; k ,  /I  - -=0 ,1, 2,. . . , IV). ( 4 . 3 )  

We r e c a l l  t h a t  N ( 5 J  ) i s  an a rb i t r a ry  point of t h e  region ( E ) .  The point/313
M(xJ ), as above, coincides w i t h  the in te rsec t ion  between t h e  s ingular  l i n e  bear
ing  the  auxiliaqy load and the  middle surface of the shell .  

Equations (L .3 )  cons t i tu te  a system of l i n e a r  algebraic equations. T h i s  
system cannot be solved autonomously, since the number of unknowns i s  f i v e  
times as great  a s  t he  number of equations. However, by giving the  coordinates 
XJ the  increments Ih j ,  we obtain a s y s t e m  of equations general f o r  t he  en t i r e  
she l l  and containing the  same number of  wanted equations and unknowns. 

We emphasize t h a t  the  resu l tan t  system i s  more exact than t h a t  obtained by 
the  usual methods, which a r e  based on the  subs t i tu t ion  of p a r t i a l  der ivat ives  
by f in i te -d i f fe rerce  r a t i o s  from the  system of p a r t i a l  d i f f e r e n t i a l  equations 
of she l l  theory, :-.:-:,-: integrat ion "smoothes out" t he  e r ro r s  introduced by the 
use of the  interpL; i i . ' , l ? i L  formulas. 

If we replace the  der iva t ives  by f i n i t e  differences,  neglecting small 
quant i t ies  of the  f irst  and higher orders, then the  system of difference q u a 
t ions  (4.3) i s  converted i n t o  a system of d i f f e r e n t i a l  equations. 

n n  

f 2) 

(i, r== 1, 2,3; j ,  S =  1, 2; k ,  p " 0 ,  1, 2 , .  . .  , .\"'. 
(L.4.) 

muations (4.3) and (4.4) approximately describe the strained s t a t e  of the  
shel l ,  outside of the  s t r i p  of width r, bordering t h e  contour of the middle 
surface of the  shell .  Constructing equations su i tab le  w i t h i ?  t h i s  s t r i p  in
volves no d i f f i cu l t i e s .  We s h a l l  not consider these equations here. The meth
od of es tabl ishing them will be given l a t e r  i n  the text.  

L e t  u s  re turn  t o  eqs.(4.3). It i s  not hard t o  convince ourselves t h a t  the  
first and second terms on the  left-hand s ides  of these equations a re  dominant, 

' j lh  



as results from the  following considerations: Wuations (3.34) can be repre
sented in the  form of 

(i, r =  1 ,  2, 3; j =  1, 2; k ,  p’=@, 1, 2,.. .  , 1). 
(4.5) 

A comparison of eqs.(4.3) and (4.5) shows t h a t  the  first two terms on 
t h e i r  left-hand s ides  coincide. The t h i r d  term on the  left-hand s ide of equa
t i o n  (4.5), a f t e r  appl icat ion o f  t he  in te rpola t ion  formulas, i s  reduced t o  /314
t h e  remaining terms on the  left-hand s ide of eq.(4.3). For t h i s  reason, an 
evaluation of t he  t h i r d  term on the  left-hand s ide of eq.(L.S) i s  equivalent t o  
an evaluation of t he  terms corresponding t o  it i n  eq.(4.3). 

Assuming, according t o  the  evaluations given i n  the  monograph (Bibl.lO), 
t h a t  

where L i s  a cha rac t e r i s t i c  dimension of t he  shel l ,  we f ind  f o r  a t h i n  s h e l l  a t  
2h : L = 0.01; M = 1.5 and L = &m: 

where the  point N(5: ) l i e s  between the  point  M(xl ) and t h e  boundary of t h e  re
gion (C). The evaluation (b )  shows t h a t  the  GaussSeidel  i t e r a t i o n  process i s  
applicable t o  the  system of equations (4.3)”. Retaining, f o r  example, t he  first 
two terms on the  left-hand s ide of eqs.(4.3) o r  (4.5), we obtain the  system of 
equations of t he  first ( i n i t i a l )  approximation: 

9 See, f o r  instance, M.J.SaLvadori, Numerical Methods i n  Ehgineering, IL, lq55.  
~
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Equations (4.6) can evidently a l s o  be obtained from e q ~ ~ ( 3 . 3 4 )by applica
t i o n  of probabi l i ty  methods, f o r  example of t he  Monte Carlo method *. The /315
p o s s i b i l i t y  of applying t h i s  method is based on t h e  r e l a t i v e  smallness of the  
region (G). In  t h i s  case, t he  most correct  choice of t he  value of the  required 
function $(*) (SJ ) under t h e  in tegra t ion  s ign i s  t h e  choice of i t s  value a t  the  
point M(xJ ) at t h e  center  of the  region (C); we again obtain eqs.(4.6). The 
general analysis  of  the  so lvab i l i t y  of these equations i s  d i f f i c u l t ,  and we 
s h a l l  not  give it here, We r e c a l l  only that the  Gauss method assumes t h e  arbi
t r a r y  choice of t h e  i n i t i a l  values of t h e  nondominating unknowns, permitting us, 
i n  the case of complications, t o  introduce i n t o  the  right-hand s ide of eqs.(Ic.6) 
addi t ional  small terms, a t t r i b u t i n g  a r b i t r a r y  i n i t i a l  values t o  the rejected 
unknowns. The fu r the r  cause of the GaussSeidel  process i s  well known, and we 
s h a l l  not  discuss it fur ther .  

The solut ions of the  system of a lgebraic  equations (4.6) permit f inding 
t h e  i n i t i a l  approximate values of the required functions q‘k)(xJ) .  Their de
pendence on the boundary conditions i s  re f lec ted  i n  t h e  composition of t h e  
functions cPlk)(xJ), which contain a l l  t h e  assigned elements of the  boundary 
conditions. 

The solution of the  system (4.6), consis t ing of 3(N + 1)equations, may be 
wr i t ten  out, using the well-known algebraic  formulas 

T h i s  notation permits us, in a more eas i ly  visual ized form than the tensor 
equation (&,6), t o  demonstrate the  s t ruc ture  of t h e  s y s t e m  of equations t o  be 
solved. The determinant of the system of equations (4.6) is  of t h e  form: 

(E)
........................... 

(E) ( 8 )........................... 

* For the Monte Carlo method 

.............. 

.............. 

............... 

(2).............. 

... 

...[J Klily”,dS 

( 8 ).............. 
(4.8) 

(E)
.............. 

see, f o r  instance, “Modern Mathematics f o r  Ehgi
neers, E.F.Bekkenbakh, Editor, S t a t e  Publishing House f o r  Internat ional  Litera
ture ,  1958, pp.275-287. 
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I 

Each column of the  determinant A corresponds t o  an unknown function u $ P ) . / 3 1 6
This i s  denoted by the  notat ion above the  horizontal  l i n e  a t  the  top of the  de
terminant. To each value p, from 0 t o  N there  correspond three  columns with 
values of r equal t o  1, 2, 3. The rows of the determinant correspond t o  the  
ind ices  ( k )  and (i). To each value of k from 0 t o  N there  correspond three  
rows with values of i equal t o  1, 2, 3. This es tab l i shes  the  r u l e  f o r  s e t t i n g  
up the  determinants . W e  have 

. . . . . . . . . . . . . . . . . . . . . .  (Jy... ......... 
q 1 =; . . . . . . . . . . . . . . . . . . . . . .  ay). . .  . . . . . . . . .  

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .  (4.9 1 

O f  course, a t  high values of N, even t h i s  simplified solution involves a 
degree of computing work which, i n  labor  involved, does not correspond t o  the 
requirements of r e l a t i v e  accuracy adopted in the  s h e l l  theory. As will be 
c l ea r  from Chapter 111, we have N s 3. I f  N equals three, then the  number of 
equations i n  t h e  s y s t e m  (4.6) will be twelve. In  t h i s  case, we must not use 
the “exact” methods of calculat ing t h e  determinants A$P) and A, but  must have 
recourse eo approximate methods. Further, as already noted, we must f ind t h e  
second approximation by subs t i tu t ing  the required functions found from the  
f i r s t  approximation in to  the  left-hand s ides  of e q ~ ( 4 . 3 ) .  

Equations (4.6) are applicable i n  the same region i n  which eqs.(3.34) are 
applicable, i.e., outside the  s t r i p  determined by the inequal i ty  (3.36). I f  
the  point M(x1 ) i s  in s ide  the  s t r i p  bordering the  contour of the  middle surface 
of the shel l ,  then the  right-hand s ide of the  equations will have the  curvil in

ea r  i n t e g r a l s  and ,which w i l l  extend over those parts of the  contour 
(1 )  r i i )  

ly ing  inside a c i r c u l a r  cyl inder  of radius  ro with i t s  a x i s  coinciding with the  
s t r a igh t  l i n e  bearing t h e  aux i l i a ry  load. 

The task of invest igat ing the  s t ress -s t ra in  s t a t e  of the  s h e l l  ins ide  t h i s  
s t r i p  i s  highly complex. Here we have a subs tan t ia l ly  three-dimensional dis
t r ibu t ion  of s t r a i n s  and stresses, so t h a t  a reduction of the  three-dimensional 
problem of e l a s t i c i t y  theory t o  the  two-dimensional problem of s h e l l  theory /31Z
w i l l  undoubtedly d i s t o r t  r ea l i t y ,  even i f  we construct an trexacttg solut ion of 
the  boundary problem of the  s h e l l  theory. Evidently, t h e  known solut ions of the  
boundary problems of the s h e l l  theory, sa t i s fy ing  the  c l a s s i ca l  boundary condi
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t ions,  describe only approximately t h e  actual  state of the  s h e l l  close t o  i t s  
edges, although this approximation, as shown by observation and experiment, i s  
su f f i c i en t  f o r  p rac t i ca l  purposes. For this reason, there  i s  not much use in 
t ry ing  t o  f ind the  exact solutions of t he  boundary problems of she l l  theory if 
such solutions require  a la rge  expenditure of man-hours and money. We should 
instead attempt t o  construct an approximate solution, with an accuracy sat isfy
ing  prac t ica l  means. 

We w i l l  not seek an exact solution in t he  border s t r ip ,  since the e n t i r e  
method considered here i s  la rge ly  approximate. W e  w i l l  confine ourselves t o  
the  approximate solution, re lying on t h e  f in i te -d i f fe rence  method. 

L e t  t he  a rc  of t h e  contour have no corner points. Let us consider the 
family of normals t o  this arc. If the  a r c  of the contour belongs t o  the  seg
ment (11), then the  displacements a re  prescribed on it and on the corresponding 
pa r t  of  the contour Surface. A t  a l l  points  of t he  noma1 t o  the  a r c  (11) of 
the  contour on the boundary and beyond the  border s t r i p  o f  width ro, the  dis
placement vector components are approximately known. By using linear interpo
l a t i o n  we will then be able  t o  construct, i n  first approximation, the displace
ment f i e l d  within the  zone and then t o  find the  der iva t ives  of the displacement 
components from the  vectors  of  the l o c a l  coordinate basis ,  belonging t o  the  con
tour  surface; by Hookefs l a w  we will fur ther  be able  t o  determine the  compon
en t s  of the s t r e s s  vector on par t  (IT) of the  contour surface. Then, by apply
ing  equations o f  the  form of eq.(3.33), extending over the  region (F), w e  in
troduce corrections in to  the  displacement f i e l d  determined i n  f i r s t  approxima
tion. 

Continuation of this process i s  theore t ica l ly  possible;  i t s  convergence i s  
evidently ensured by the  smoothing influence of integration. 

The case of a region (C) ly ing  inside the  s t r i p  bordering the contour of 
t he  middle surface, and enclosing pa r t  of the  contour (I), with the stress vec
t o r  components prescribed on the  contour surface, i s  somewhat more complicated 
than the last  case. Here, t he  i n i t i a l  approximation by t h e  displacement vector 
components on the  contour susface must be determined by extrapolation i n  terms 
of t h e  required values of t he  displacement vector components ins ide  t h e  zone 
and t h e  values of these components outside the  zone; we must set up modified 
equations ( 3 0 3 3 )  t o  determine the  f i e l d  of displacements inside the  zone, since 
extrapolation introduces the  required displacement vector  components of an in

t e r n a l  point of the  zone i n t o  t h e  in t eg ra l  s . We are unable t o  discuss  /318

( 1 )  

these questions in d e t a i l  here, o r  t o  invest igate  the  displacement f i e l d s  in 
the  neighborhood of a corner point of  the contour. 

Section 5. 	 The In tegrodi f fe ren t ia l  and Integral  Equations of t he  
Dynamics of Shel l s  

I n  order t o  obtain the  equations of motion from t h e  equations of equilib
rium, it i s  suf f ic ien t  t o  include in the  body forces  the  i n e r t i a  forces  

320 



Quat ion  (3.24) then takes  t h e  following form: 

(i, r .1 1, 3, 3; j .:= 1, 2 ;  k -=O, 1, 2,  . . . , N). 

W e  r e c a l l  t h a t  an element of  volume reads 

where dS i s  an element of a rea  of the  middle surface of t he  shell .  

In the  expressions of t h e  i n e r t i a  forces, l e t  us  pass t o  the covariant 
components, changing the  arrangement of t h e  indices i n  the  corresponding sca la r  
product entering in to  eq.(5.1). Finally, l e t  us  again make use of the  approx
imate equation ( 3 0 9 )  

P -0 


Introduce now the  notation 

(5.3) 


Then, as a result of transformations analogous t o  those considered i n  der iving 
t h e  system (3.33), we find 



I 

(i, r =  1, 2, 3; j - 1, 2; k ,  p = O ,  1, 2,.. .  , N ) .  

Equations (5.4) a r e  t o  be regarded as a s y s t e m  of in tegrodi f fe ren t ia l  
equations of the  dynamics of s h e l l s  i n  the  unknown functions uIk)(t, XJ ) where

/319 
the  point M(xJ) belongs t o  t h e  middle surface of the  s h e l l .  

The statements made in discussing eqs.(3.33) are l ikewise applicable t o  
eqs. (5.4). 

L e t  us now consider two conditions of vibratory motion of the  s h e l l  which 
are encountered i n  the  solution of concrete problems. 

1. Stationary Osci l la tory Process 

If the process i s  stationary,  we may put 

( i =  1, 2,  3; k - 0 ,  1, . .  . , A,‘). (5.5 1 
Similarly, 

( r = l ,  2, s ; p - o ,  1, 2) . . . ,  N ) .  

The sequence of frequencies w may be e i t h e r  f i n i t e  o r  i n f in i t e ,  bu t  we 
will assume tha t  this sequence i s  discrete .  Subst i tut ing eqs.(5.5) and (5.6) 
i n t o  eqs.(5.4), and equating t o  zero the  coef f ic ien ts  of cos (wt + e“,), we f ind  



(S) 

(i, r =  1 ,  2, 3; j =  1, 2; k ,  p = o ,  1, 2, . .. , IV). 

where w runs through a d i s c r e t e  s e r i e s  of values according t o  e q ~ ( 5 . 5 )  - (5.6). 

The system of equations (5.7) does not e s sen t i a l ly  d i f f e r  from eqs.(3.33), 
and we s h a l l  therefore  not discuss  it. The system (5.8) contains the  parame
ter  w. W e  w i l l  not fu r the r  analyze the  conditions of so lvab i l i t y  of eqs.(5.8). 
Rather, we r e c a l l  t h a t ,  since the  l i n e a r  system of in t eg rod i f f e ren t i a l  equa
t ions  can be approximately replaced by a system of l i n e a r  a lgebraic  equations,
it follows t h a t  ( i f ,  f o r  some values of t h e  parameter w, there  e x i s t s  a non- /320 
t r i v i a l  solut ion of  the homogeneous equations, i.e., equations with the  f r e e  
terms iPJk) equal t o  zero) t he  system of inhomogeneous equations (5.8) has no so
l u t i o n  f o r  these values of the  parameter w. These cases which a r e  cases of 
resonance w i l l  require separate investigation. 

2. Nonstationary Osci l la tory Process-.- ~~ 

I n  t r ans i en t  regimes of loading of  a she l l ,  it may be impossible t o  repre
sent t h e  functions iPi(k) ( t ,  xJ) by equations o f  the form of eq.(5.5). I n  t h i s  
case we must turn  t o  the Laplace-Carson transformation of  the system of in te 
grodi f fe ren t ia l  equations (5.4). 

It i s  well known t h a t  t h e  representation of the functions f ( t )  according t o  
Laplace and Carson i s  expressed by the  following formulas: 

co 


f ( y )  .=p j ’e -P‘ f ( i )d t .  
0 


Applying the  Laplace-Carson transform t o  the  second time der iva t ive  o f  the 
function f ( t ) ,  we f ind  

ca 


p S s ~ ~ f ” ( / ) d t = . p ’ j ( p ) - - p ? f ( O ) - p p f ’ ( O ) .  
0 


Thus the representation of the  second der iva t ive  f ” ( t )  i s  expressed i n  
terms of the representation o f  t he  function f ( t )  and i t s  value, and a l so  i t s  
f i r s t  time der iva t ive  a t  t he  i n i t i a l  time t = 0. 

Applying the  Laplace-Carson transform t o  the system of equations (5.4) and 
~ 

-2 Cf., f o r  instance, A.I.LurTye, Operational Calculus, Gostekhizdat, 1950. 
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using eqs. (b)  and (c), we obtain the  following s y s t e m  of operational integro
d i f f e r e n t i a l  equations: 

(5.9) 

(i, f =  1, 2, 3; j - 1, 2; k ,  q=o ,  1, 2,. .  . , N ) .  

/3nThe first three  terms on the  right-hand s ides  of eqs.(5,9) are prescribed 
functions. The i n i t i a l  conditions which must be s a t i s f i e d  by the  wanted func
t i o n s  en ter  i n to  these terms. 

After determining the representations o f  the  quan t i t i e s  ulk)from eqs. (5.9) 
we must f ind t h e i r  or iginals ,  applying i n  the  general case the  Riemann-Mellin 
formula: 

e t i m  -+ 

I n  special  cases, Tables can be referred t o  t h a t  cor re la te  t h e  elementary 
and higher transcendental functions w i t h  t h e i r  transform#. 

The described method w a s  applied by G,Ye.Kazantseva i n  solving problems of 
vibrat ion of round p la t e s  (G.Ye.Kazantseva, On t h e  Vibrations of Thin Circular 
Plates ,  Thesis, Kiev Polytechnic Ins t i t u t e ,  1956). 

Section 6. 	 &a1 Systems of In tegrodi f fe ren t ia l  Qua t ions  of  the  
Dynamics o f  She l l s  w i t h  Focusing Kernels and t h e i r  . 

Azrrximate Solution 

Heye, we will b r i e f l y  discuss  t h e  approximate methods of solution o f  the  
equations derived i n  Sect.5, based on the  focusing propert ies  of systems of 
aGi1iax-y loads and t h e  re la ted  systems of auxiliary displacements of stresses, 

.3t Cf. f o r  instance, V.A,Ditkin and A,P.Prudnikov, In tegra l  Transformations and 
Calculus of Operations. Fizmatgiz, 1961, 
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As i n  the  l as t  Section, t h e  equations of s ta t ionary and nonstationary osc i l la 
to ry  processes will be considered separately. 

1. Stationary Osci l la tory Processes. 
The Frequency Spectrum 

On the  bas i s  of t he  propert ies  of equations with focusing kernels, t he  
system (5.7) - (5.8), outside the  s t r i p  of width ro bordering the  contour of 
t h e  middle surface, can be simplified and represented i n  t h e  form: 

The approximate solution of eqs,(6.1_3.) - (6.lb) can be performed a s  in-/322 
dicated i n  our discussion on the  s t a t i c  equations, provided tha t  the frequency 
of t h e  f r ee  osc i l l a t ions  i s  not w, i.e,,9 t ha t  resonance i s  absent. 

In  connection with this question, l e t  u s  consider the approximate deter
mination of t h e  frequency spectrum by use o f  the approximate solution (6.Yo). 

F i r s t ,  we note t h a t  t h e  approximate equation (6.1b) and the more exact 
equations (5.8) o f  the she l l  theory perni t  an approximate determination only of  
a portion of the  frequency spectrum of  the three-dimensional problem of  elas
t i c i t y  theory. The dimensions of t h e  frequency regions accessible for deter
minations based on the  equations of she l l  theory depend primarily on the num
be r  N, i.e., on the  number o f  terms i n  the  polynomials of z by which we approx
imated the displacement vector components. Further r e s t r i c t ion  of the frequency 
region depends on the  approximate methods used i n  solving the  integrodifferen
t i a l  equations of the  s h e l l  theory. 

To obtain an idea as t o  t h e  e f f ec t  exerted on the  frequency equation when 
replacing the  approximate equation (6.lb) with focusing kernels by equations 
with kernels t h a t  smoothly vary a t  any var ia t ion of the  mutual posit ion of the  
points  M(xJ) and N ( S J  ) on the  middle surface, l e t  u s  have recourse t o  t h e  clas
s i c a l  argument based on the  approximate replacement of eqs.(6.lb) by a system 
of algebraic equations . 

L e t  u s  imagine, on the  middle surface of t he  shel l ,  an orthogonal coordi
nate  ne t  where t h e  s ides  of t he  meshes are shor te r  than r,, with ro equal t o  

Mh (1 +-1 -% + ...) according t o  the  condition ( 3 . 3 6 ) .  Then, the  region
2 r

(C) will include a f i n i t e  number of nodes of t he  coordinate net. If n, i s  the  
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number of nodes of t h e  coordinate ne t  i n  the  region (C), and q, i s  the  number 
of nodes on the  e n t i r e  middle surface (S), then we obtain t h e  approximate equa
t i o n  

/ I ,  : / I ,  GS (S): (S). 

W e  w i l l  consider the  values of uJP)a t  t h e  nodes of the  coordinate ne t  as 
unknowns. Then, placing the  point M(xJ ) a t  the  nodes of t he  ne t  and approxi
mately representing the  in t eg ra l s  i n  eq.(6.lb) by f i n i t e  sums under application 
of t he  formulas of mechanical quadrature, we replace the  system of equations 
(6.lb) by systems of a lgebraic  equations corresponding t o  fixed posit ions of 
the point M. This procedure i s  applicable both t o  equations with focusing ker
ne l s  and t o  equations with kernels t ha t  do not possess focusing properties. 

If we compare the  determinant of the  s y s t e m  of a lgebraic  equations ob
tained from the in tegrodi f fe ren t ia l  equations having kernels without focusing 
propert ies  with the  determinants of t h e  system resu l t ing  from eqs. (6.lb),we /323 
sha l l  see t h a t  the  l a t t e r  has most of i t s  elements equal t o  zero, since most of 
the  nodes of the net, a s  can be seen from eqs.(6.2), a r e  excluded from the  re
gion (z). 

The determinant of the  system w i t h  focusing kernels includes elements t h a t  
depend on t h e  boundaqy conditions. This f a c t  i s  due t o  the  influence of the  
boundary condition on the  frequency spectrum. However, evidently there  exists 
some par t  of t he  frequency spectrum t h a t  depends but weakly on the  boundary 
conditions. We will o f f e r  suggestions t h a t  seem t o  confirm t h i s  conclusion. It 
must be emphasized t h a t  we consider the  arguments developed below as being 
merely heur i s t ic  . 

L e t  u s  perform, on the  s y s t e m  (6.lb), s implif icat ions analogous t o  those 
used i n  studying the  s t a t i c  system (3 .34 ) .
equations analogous t o  the  system (4.6): 

We f ind the  system of algebraic 

(i, r = l ,  2,3; k ,  p = o ,  1, 2, . . . ,  N).  (6.3 1 

The determinant of t he  system of algebraic equations (6.3) can be obtained from 
eq.(b.8) on replacing the  kernel K(l;)J 'by the  difference 

When the  point M(xJ ) i s  superposed on the  fixed nodes of the coordinate 
net,  and when the  in t eg ra l s  entering in to  the  determinant A of the system of 
a lgebraic  equations (6.3) a r e  replaced by f i n i t e  sums resu l t ing  from the  formu
l a s  of mechanical quadrature, the determinant A w i l l  have numerical elements 
instead of functional ones. Equathg the  determinant A t o  zero, we f ind the  
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charac te r i s t ic  values of t he  parameter w’, the  frequencies ,of t he  free vibra
t i o n s  of t he  shell .  

The determinant A, a s  shown i n  Sect.l, i s  of t he  order 3 ( N  + 1). If t h e  
number of nodes of the  coordinate ne t  on t h e  middle surface S i s  n,, then t h e  
t o t a l  number of unknowns w i l l  be  3 ( N  + l)b ; t h i s  number i s  equal t o  the  degree 
of the  complete equation of frequencies with respect t o  w2. The roots  of t he  
complete equation of frequencies,i.e., of t he  equation including t h e  coeffici
en t s  of the  unknowns a t  a l l  nodes of t he  coordinate net, must include roots  f o r  
which the  determinant A ,  derived f o r  t he  s y s t e m  of  equation (6.3), approximate
l y  vanishes. I n  the  opposite case, the homogeneous system of equations corre
sponding t o  eq.(6.3) would be only t r i v i a l  solut ions f o r  these roots, which i n  
turn would mean t h a t  t he  solut ions of the system (6.3) had deviations a rb i t ra r 
i l y  great  i n  absolute value from the solutions of t he  o r ig ina l  system con
structed without t he  above j u s t i f i e d  simplifications,  a case which would con
t r a d i c t  a l l  of our e a r l i e r  conclusions. 

But then, t o  obtain approximately a portion of the  frequency spectrum, /324
it i s  enough t o  equate t h e  determinant d of the system of algebraic equation
(6.3) t o  zero, placing the  point M ( x J  ) a t  one of t he  nodes of the coordinate 
net. Thus, we  f ind the  approximate values of t h e  3 ( N  + 1)roots  of the  fre
wuency equation. Placing the  goint  M(xJ) a t  a l l  t h e  nodes of the net, we f ind 
a l l  the  3 ( N  + l)% values of w . T h i s  shows t h a t  t he  use of focusing kernels 
enables u s  approximately t o  represent the  frequency equation a s  a product of n, 
factors.  

This again leads  t o  the  concept of the existence of two groups of frequen
cies. The frequencies of one group a re  weakly connected with the  boundary con
dit ions.  These are frequencies approximately determined by the equations t h a t  

Theare obtained by equating the  determinants of  the system (6.3) t o  zero. 
second group o f  frequencies depends substant ia l ly  on the  boundary conditions. 
These frequencies a re  obtained from the determinants of systems analogous t o  
system (6.3) bu t  set up under the  assumption t h a t  t he  point M(xJ ) belongs t o  
the  s t r i p  of width r, bordering the  contour of t h e  middle surface. This sub
d iv is ion  of frequencies i n t o  two groups should become more d i s t i n c t  f o r  thinner  
shel ls .  Such phenomena are obviously connected with t h e  dynamic boundary ef
f e c t s  mentioned i n  A.LOve*s book+. An indi rec t  confirmation of the  correctness 
of these conclusions i s  t h e  weak dependence of t he  c r i t i c a l  values of  the  load 
on the  boundary conditions, which i s  mentioned i n  works on the  theory of sta
b i l i t y  of shel ls ,  i n  t he  presence of la rge  regions on the  middle surface suff i 
c i en t ly  remote from i t s  contour (Bibl.4, 10). The l a t t e r  conclusions, however, 
require  addi t ional  research. 

2. Nonstationaw Processes 

I n  the  case of equations with focusing kernels, eqs.(5.9) can be simpli
f i e d  i f  the  point M(xJ ) l i e s  outs ide the  s t r i p  bordering t h e  contour of t he  
middle surface, as mentioned above. We f ind 

-3 A.Love, Mathematical Theory of m a s t i c i t y ,  ONTI, 1935, p.575. 
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P) 

(i, f := 1 ,  2,3; j - 1, 2; It, q=o,  1, 2, . . .  , N ) .  

The simplifications made i n  se t t i ng  up the  equations of the s t a t i c s  of 
she l l s  yield a system of algebraic equations analogous t o  system (4.3) and /325
approximately replacing the  system (6.L): 

The meaning of the  notation introduced here i s  given i n  constructing the 
system of equations (4.3). Again basing our calculation on the  scheme o f  the  



Gauss-Seidel i t e r a t i o n  process, we obtain the  following system of equations of 
the  first ( in i t ia l )  approximation: 

(E) 

(i, r = l ,  2, 3; j= 1, 2; k ,  q - 0 ,  1, 2,. . .  , A‘). 

/326 
Solving t h i s  system according t o  eqs.(6.7) on replacing the kernels K f i \ ;  

by t h e i r  sums K c ( $ h i  + p V t i q )  ,we f ind the  approximate expressions of the reck’ 
quired representations L+(~)  i n  the  form of in tegra l  ra t iona l  functions o f  t he  
parameter p, and then continue the  process of i t e ra t ion .  The elementary consi
derat ions based on eqs.(4.7) and an evaluation of the  degree of p i n  t h e i r  nu
merators and denominators show tha t ,  from the resu l tan t  transforms, the or ig i 
na l s  can be found, i.e., these transforms permit inversion. 

In the  s t r i p  bordering the  contour of the  middle surface, we must use t h e  
approximate methods given i n  Sect.4. These methods again reduce the problem t o  
the  solution of a system of algebraic  equations containing, a s  unknowns, the  
transforms of t h e  functions sought. We w i l l  not fur ther  develop t h i s  method 
bu t  re turn t o  the  discrete-continuous method considered i n  Chapter IV.  

Section 7. Application of the  Discrete-Continuum Method 
- ~ -

In  Chapter IV we considered an approximate method fo r  studying t h e  dynam
i c s  of shel ls ,  based on replacing the she l l  by a discrete-continuous system. 
The meaning of the  concept of a discrete-continuous system has been given i n  
Sect.13, Chapter IV. 

W e  r eca l l  that ,  t o  s e t  up the equations of motion and the  equations of con
nec t iv i ty  t h a t  had t o  be sa t i s f i ed  by the  generalized coordinates of t he  dis
crete-continuous system, we used a method of reducing the  three-dimensional 
problems of the theory of e l a s t i c i t y  t o  the  two-di.mensj.ona1 problems of the  
theory of shells,  based on expansion of the  wanted. .t‘c,r!;:tions i n  Maclaurin ten
sor  s e r i e s  i n  escending powers of the  coordinate zs 

This method has the shortcoming noted i n  Chapter 111, The complications 
encountered i n  t h e  ana ly t ic  composition of the  connectivity equations resu l t ing  
from the  boundary conditions are very substant ia l ,  We r e c a l l  t h a t  these equa
tions, in the  general case, contained the  second time derivat ives  ( a s  well  as 
t h e  der ivat ives  of o d e r s  higher than the  second) of the  generalized coordi
nates; this precludes the  use of t h e  apparatus of c l a s s i ca l  dynamics i n  con
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s t ruc t ing  the equations of motion, although i n  spec ia l  cases t h i s  apparatm is  
app l icab1e . 

I n  the preceding Sections of this Chapter we considered a new method of 
reduction, based on the  theorem of work and rec iproc i ty  and t h e  use of focusing 
auxi l ia ry  loads. This reduction method permits elimination of the  above com
p l i ca t ions  and t o  map out  a more e f fec t ive  version of .the discrete-continuous 
method. 

We sha l l  s t a r t  out from the  system of in t eg rod i f f e ren t i a l  equations (5.4) 
w i t h  focusing kernels, s t i l l  r e s t r i c t i n g  the  in tegra t ion  region t o  the region 
(C). Then, the system of in t eg rod i f f e ren t i a l  equations (5.4), outside the /327
s t r i p  of width r, bordering the contour of t he  middle surface, can be given t h e  
following form: 

(7.1) 

( i ,  r = l ,  2, 3; k , p = O ,  I ,  2, - . . ,N). 

Let us  make fu r the r  use of  the in te rpola t ion  formula (4.1). We introduce 
the  notation: 

Then, eqs.(7,1) w i l l  y ie ld  the system of equations analogous t o  t h e  sys
tem (4.3): 



('Zp r =  I, 2, 3;j = l ,  2; k ,  p=O, 1, 2, ... , N). 

O n  the bas i s  of the  estimates given in Sect.4, we find from the system /328
(7.3a) t h e  sgstem of equations of the first ( i n i t i a l )  approximation. 

The System o f  equations ( 7 . 3 )  i s  ana.Iogous t o  t h e  s y s t e m  of algebraic 
equations (4.6) of the  s t a t i c s  ,of shells and contains derivattvea only with re
spect t o  the t i m e  t. 

Let  us replace tire triangulation- net introduced in Sect.14 of Chapter IV 
by an orthogonal coordinate net corresponding t o  the i n L e r p o b ~ nformula 
(4.1). W e  shall superpose t he  point M ( x f  ) with the nodes of  the net and consi
de r  the quant i t ies  u $ P ) a t  t h e  nodes as generalized coordinates, W e  assume t h a t  
t he  meshes of t h e  net considerably exceed the  region e).Th- iilr the  region 
(E)  there  can be cmly one node of the net. Since the coordinaLes of the nodes 
are fixed, the  integrals over the  region (C) entering lnto eqs.(7.3b) w i l l  be 
functions of the  " h e r  of nodes of the net. Bearing inmfnd eqs0(5d), we bi
troduce t h e  notation: 

y!;;' ( i t )=JJ v:z{ (x;, E") dS; 
(3) 

m;;y ( / I )  =JJ V(\$)r (27, E9) (ti - a; 
(E) 
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where n is the  number of the  node of the  ne t  and the  
the  node n 

are the  coordinates of 

The system of equations (7.3a) takes t h e  form /329 

[i,r = 1, 2, 3; j = 1, 2; k, p = 0, 1, 2, ...,N; the  summation over j i s  per
formed according t o  the  conventional rule).  

The s y s t e m  of equations of the  i n i t i a l  approximation i s  of the form: 

( i ,  r = l ,  2, 3; k, p = o ,  1, 2,...., N). 

Equations (7.5a) and (7.5b) are s e t  up f o r  each node of the ne t  t h a t  does 
not  belong t o  the  s t r i p  of width ro bordering the  contour of the middle surface. 
The na tura l  question arises as t o  the degree of approximation t o  the descrip
t i o n  of real motion of s h e l l  elements by the  equations of the  i n i t i a l  approxi
mation (7.9). This question is complex but is of p rac t i ca l  importance, s ince 
a c l e a r  def in i t ion  of the  r o l e  of eqs. (7.9) will decrease the  amount of comp
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t a t i o n a l  work necessary t o  solve the  problem. 

W e  s h a l l  confine ourselves t o  the  following remark: Although e~s.(7.%) , 
are s e t  up autonomously f o r  each node of t he  net, which apparently i s  inconsisf+ 
e n t  with the  interdependence between t h e  motions of t he  nodes, this dependence
is imp l i c i t l y  re f lec ted  in the  composition of t he  coef f ic ien ts  of these equa
t i o n s  and of t h e i r  right-hand sides, which helped t o  reduce t h e  error. Actu
ally, the  coef f ic ien ts  of eqsm(7.5a) - (7.5b) are expressed by i n t eg ra l s  ex
tending over a m a l l  but  finite region (C) of t h e  middle surface of the  she l l ,  
Including, as they do, t he  e l a s t i c  constants, t he  dens i ty  of the  shel l ,  i ts  
thiclmess, and the  pr inc ipa l  curvatures of the  middle surface, these coeffici
e n t s  . r e f l ec t  t h e  b a s i c  propert ies  of t he  s h e l l  as a continuous medium. They 
are links that connect t h e  state of the  s h e l l  a t  a ce r t a in  point with i t s  stat4 
i n  t h e  region surrounding t h a t  point, This connectivity is the  result of ap
p l i ca t ion  of the  Reciprocal Theorem, one of t he  fundamental theorems of t he  
mechanics of e l a s t i c  bodies, 

In determining the  first approximation f r o m  eqsm(7,5b), we f ind the  fol
lowing approximations from eqs. (7.5a), by subs t i tu t ing  i n  them the  second-degree 
terms of the  solut ion of eqs.(7,5b). A t  these stages, t he  i n t e r r e l a t i o n  be
tween the motions of adjacent nodes of t he  ne t  i s  e x p l i c i t l y  revealed. 

In conclusion we note that, on appl icat ion of equations t h a t  have ker- /330 
n e l s  without focusing properties,  t he  i n t e g r a l s  i n  the  in tegrodi f fe ren t ia l  
equations (5.4) would extend over t he  e n t i r e  middle surface, and a l l  the  gener
alized coordinates would en te r  into them?+. 

L e t  u s  discuss  the  equations of motion of elements of a s h e l l  ly ing  i n  a 
s t r i p  of width r, ,where ro is  determined by eq.(3.36), bordering the  contour 
of the  middle surface of a shell .  The grea tes t  difference between these q u a 
t i o n s  and the equations considered in Chapter IV (Sects.15 - 16) l i e s  i n  the  
f a c t  t h a t  components of the  displacement and stress vectors, prescribed over 
t he  contour surface, a r e  included in the  prescribed functions Q:, which are 
here analogs of t he  generalized forces. This r e c a l l s  t he  "automatic'' inclusion 
of the  equations of geometric connectivity i n  the  system of Lagrange equations 
of the  second kind on se lec t ion  of t he  generalized coordinates corresponding t o  
the  conditions of a concrete problem of mechanics without introduction of re
dundant coordinates. Evidently, it i s  not  a question here of a simple ex terna l  
s imi l a r i t y  but of a complex in t e rna l  re la t ion,  s ince the  Reciprocal Theorem is  
connected with the  pr inc ip le  of possible displacement*. 

* The above proper t ies  f o r  equations with focusing kernels  and the  reMtant 
simplif icat ions of t h e  system of equations of motion of s h e l l s  were given by us 
i n  the  Note "Approximate Methods of Invest igat ing the  Equilibrium and Vibra
t i o n s  of She l l s  as Discrete-Continuous Systems", in: Information Bul le t in  No.2 
of t h e  S c i e n t i f i c  Council on "Scient i f ic  Pr inciples  of Strength and Plas t ic 
itsw,1961, 
+wT h i s  i n t e r r e l a t i o n  was cal led t o  our a t t en t ion  by'Yu.N.Shevchenko, Senior 
Sc ien t i s t ,  h s t i t u t e  of Mechanics, Academy of Sciences UkrSSR. 
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Thus, the  complications mentioned in Sect.15 of Chapter IV do not  ac tua l ly  
ar ise .  It is  true,  these complications were  due to  the  method of reduction 
used in t h a t  Section and did not  r e s u l t  from the  essence of t he  mechanical 
'problem. W e  r e c a l l  t h a t  t he  appearance of time der iva t ives  i n  the equations of 
connectivity was  due, in this case, t o  t he  successive elimination of deriva
t i v e s  of t he  form 0,... V , q  on the  bas i s  of the  equations of motion in t h e  Lam6 
form. 

To set up the  d i f f e r e n t i a l  equations of m t i o n  of t h e  nodes of the coordi
na te  ne t  in the  s t r i p  bordering t h e  contour of the  middle surface, it i s  neces
sary, as pointed out in Sect.4, t o  use u n i l a t e r a l  f i n i t e  differences f o r  ex
pressing the  unknown values of t he  components of displacement and s t r e s s  on t h e  
contour surface in terms of t h e i r  values in s ide  the  shell .  The forms of these 
equations depend subs tan t ia l ly  on the  form of t h e  contour and the geometrical 
propert ies  of the  middle surface. Here, these equations are not considered. 

The discrete-continuous method always allows us  t o  obtain a s y s t e m  of or
dinary d i f f e r e n t i a l  equations, determinate in the  sense t h a t  t h e  number o f  
equations equals t he  number of functions sought. This confirms the  existence 
and uniqueness of t he  solut ion of the  system of d i f f e r e n t i a l  equations of mo
t i o n  of the  shell ,  constructed by us. 

We r e c a l l  that the  appraximate replacement of t he  in t eg ra l s  by f i n i t e  /331 
sums, has been, ever since Mer's day, t he  c l a s s i c a l  method of invest igat ing 
various questions of mathematical physic+. The requirements of mathemtical 
r i go r  compel u s  t o  pass t o  t he  limit, from the wanted systems of d i f f e r e n t i a l  
equations with a f i n i t e  number of functions t o  systems of in t eg rod i f f e ren t i a l  
equations. This passage t o  the  limit must show t h a t  the  solut ions of t h e  sys
tems of d i f f e r e n t i a l  equations obtained from the  in tegrodi f fe ren t ia l  equations 
(5.4) by in te rpola t ion  formulas, Le. ,  by the  discrete-continuous method, coin
cide a t  the  l i m i t  with the  solut ions of t h e  initial system (5.4). 

O f  course, the  solut ions io� t he  simplified systems of t h e  form of equa
t ions  (7.5a) - (7.5b) a r e  only  r a the r  rough approximations t o  the  exact solu
t ions,  and cannot be used t o  construct a sequence of f h c t i o n s  converging t o  
the  exact solution of t he  s y s t e m  (5.4). 

We have not invest igated the  above-mentioned process of convergence in de
t a i l  since the  technique of such invest igat ion has been thoroughly studied so 
t h a t  i t s  r e s u l t  i s  known i n  advance, although one would have t o  overcome con
siderable  d i f f i c u l t i e s  when inves t iga t ing  a method of mathematically describing 
the  process adapted t o  t h e  spec ia l  features of the  problem. Such investiga
t i o n s  would be  outside the  scope of  our study. 

Section 8. Nonlinear In tegrodi f fe ren t ia l  Equations of t h e  Dynamics of Shells-

I n  Sect.12 of Chapter 11, we proved a theorem which w e  cal led the  theorem 
of work and rec iproc i ty  in the  nonlinear theory of e l a s t i c i ty .  T h i s  theorem is 

* See, for  instance, R.Courant and DAilbert,  Methods of Mathematical Physics, 
Vol,l - 2, Gostekhizdat, 1933 - 19% 
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applicable t o  an  anisotropic  medium with geometrical and physical nonlinearity. 

The Reciprocal Theorem makes it possible t o  construct nonlinear integro
d i f f e r e n t i a l  equations of t he  dynamics of shel ls .  

W e  s h a l l  confine ourselves t o  consideration of a s h e l l  made of an isotro
p i c  material, and s h a l l  consider only the case of geometrical nonlinearity. It 
i s  na tura l  t o  assume t h a t  f i n i t e  deformations are developed i n  the  s h e l l  under 
the  act ion of the  applied load and under ce r t a in  conditions on its surface con
tour, a s  a r e s u l t  of i t s  f l e x i b i l i t y  (Bibl.4).. For this reason finite deforma
t i o n s  characterize the  bas i c  state of the  s h e l l  bu t  not i ts auxiliary state. 

As before, the  auxi l ia ry  s t a t e  w i l l  be constructed from the  displacementsB32 
and s t r e s ses  i n  a l i n e a r l y  deformed unbounded medium under the  act ion of the  
load indicated i n  Sect.2. In  this case, the shel l ,  as already pointed out, 
must be regarded a s  part of an unbounded medium. 

This argument eliminates the  fundamental d i f f i c u l t y  connected with the  
above procedure f o r  appl icat ion of the  Reciprocal Theorem, since it i s  then no 
longer necessary t o  determine the  pa r t i cu la r  solut ions of the  equations of the  
theory of e l a s t i c i t y ,  corresponding t o  the ac t ion  of  a concentrated force i n  a 
nonlinear deformable e l a s t i c  medium. 

L e t  u s  again consider (11, 12.10) a s  w e l l  as (11, 12.2a), (11, 12.2b), 
(11, 12.8) and (11, 12.9). W e  sha l l  attempt t o  reduce these r e l a t i o n s  t o  ex
pressions containing the  bas ic  system of required functions ur(p) introduced i n  
t h i s  Chapter, To obtain results su i tab le  f o r  concrete calculations,  we s h a l l  
introduce, i n t o  the  nonlinear pa r t  of the  components of the finite-deformation 
tensor  D,, ,only  those terms which have been considered dominant ever since the  
first s tudies  made by T.Karman, These a r e  the  terms depending on the  displace
ment vector components u, (Bibl.4, 10). L e t  u s  use the notation: 

W e  make use here of t he  metric of the  unstrained shel l ,  i n  which, i n  ac
cordance wi th  Sect.2 of Chapter 11, the  covariant der iva t ives  0, and v, a r e  de
termined. We note t h a t ,  i n  contrast  t o  the  modern theory of f lef ible  p l a t e s  
and she l l s ,  we s h a l l  not  put (V3u ,  )” = 0. 

The covariant der iva t ives  V,u , ( i  = 1, 2) do not en te r  i n t o  the  system of 
functions g*).Therefore, t o  accomplish the  program of se t t i ng  up equations i n  
the  unknown functions we s h a l l  use the  approximate r e l a t ion  r e su l t i ng  from 
the  equa l i t i e s  (111, 7.4a), supplementing it by t h e  nonlinear f a c t o r  

( i s  1, 2). 
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where X(+li and X ( - l i  are the s t r e s s  vector components determined with respect 
to the forces act ing on the deformed boundarg surfaces. This results from the 
conditions (11, 8.2b), which a.lso have a meaning f o r  f i n i t e  deformations. 

From eqs.(8.2), the  following approximate re la t ion  i s  obtained: 

W e  introduced t h e  notation L222 

Y ,  = &+) i -Xi-)I ( i =  1, 2).
2P 

Under the above assumptions, the re la t ion  (11, 12.2b) can be represented 
as follows: 

We took account here of the orthogonality of the system of coordinates d on 
the d e f o r m e d  middle surface. 

Making use of eqs.(II, 12.2a) and (8.5a) - (8.R), we find, for  the basic 
system of forces acting on the she l l  and the resul tant  strains and stresses:  

(8.6a) 
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a* =ui3 -pup [Yi-rcjq (1+@)-t; a*,, =Q33 --1 (u3(1))2 

2 
( j =  1, 2). (8.6b) 

F’urther, it follows from (11, 12.8) that 

The meaning of the second termon the  right-hand side of eQ.(a) will be c lear  
from the foregoing. The first term is  connected with the  s t r e s s  vector on the 
surface of the shell ,  a s  will be seen f r o m  (11, 8.13). To write eq.(a) i n  the 
expanded form, one must separately consider the s t r e s s  vector on the boundary 
surfaces of the she l l  and on i ts  contour surface. On the  boundary surfaces, 
eqs.(II, 8.3) can be represented in the form 

%‘=!E‘ ( i =  1, 2); x 3 = + h ;  

and, on the contour surface, 

Making use of (11, 8.yb)j we f ind on the boundarg surfaces: 

B 3 3  = 1. 

A l l  the remaining quant i t ies  B,, on the boundary surfaces 
contour surface 

( r =  1, 2, 3). 

Making use of (11, 6.5) and of the simplifying assumptions by T ~ K a m n ,we ob
t a i n  on the boundary surfaces of the shell :  

4 and, applying (11, 8.13), we f ind on the boundarg surfaces of the shell :  
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I 111111. , I  , ..,.. , . ..-. - . 

a. .tli N t xktc)i 
i J  ‘0 -- 1 +l l i l )  

” + X [ , )  j ( l  -11;) + ...) (i= 1, 2). (8.7) 

Noting t h a t  on the  boundary surfaces of the shel l ,  f o r  z = &h, 

we find from eq.(a), 

(i =1, 2); 

W e  note t h a t  the  quan t i t i e s  4” a r e  small by comparison with dl’. This 
permits a s b p l i f i c a t i o n  i n  deriving, from t h e  equations of motion, the  equa
t i o n s  of first approximation. Essent ia l ly  eqs.($.8a) - (8.8b) show that ,  under 
Kamanfs simplifying assumptions, the s t r e s s  vector components on t h e  boundary 
surfaces can be determined b the  l i n e a r  theory. If, according t o  Karmanfs 
evaluations, the  order of ui5 i s  equal to the  order of (i, k = 1, 2), and 
the  order  of 4’) i s  higher than the  order of e l k ,  then a l l  introduced nonlinear 

3/2 2
terms w i l l  be of t he  order - peik and w i k .  

If terms with the  f a c t o r s  epq(p, q = 1, 2) a r e  retained i n  eqs.(8.8a) t o  
(8,8b), then the  right-;and s ides  of eqs.(8.8a) - (8.8b) w i l l  have a d d i t i o n a l m  
teImS of the  order - peik . O f  course, i f  considerable accuracy i s  desired, one 

must r e t a i n  i n  eqs0(8.8a) - (8.8b) first of a l l  the  terms of order  - . 3/2. 
On the  contour surface, 

Here, we dropped the f a c t o r  (1+ t.+$’) 7’. Making use of eqs.(8.2), we f ind 
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2Here again the term YPuD(’) i s  of the order - e l k ,  and this term should be neg
3/a . Such terms can be retained in t h 6lected. The ~$1 up(’) i s  of the order - elk 

construction of the second approximation. 

On t h e  contour surface, 

n i # O  (i= 1, 2); 

L e t  us  assume, t o  simplify the calculations, 
contours of the boundary surfaces. In tha t  

n,3=0. 

tha t  there are no loads on the 
case, the components Yp vanish. 

Again making use of (11, 8.l3), and relat ion (a )  of this Section, we obtain on 
the contour surface 

(8.10) 


(i= 1, 2, 3). 

The components T,, are determined from eqs0(8.5a) - (80%). It will be 
clear  from eqs.(8,5a) t ha t  the right-hand side of eq.(8.10) contains the non
l inea r  terms u$’) 4’’ (i,k = 1, 2 ) ,  of the order of - V B l k  . Thus, i n  contrast 
t o  the stress vector components on the boundary surfaces, the components of the 
vector on the contour surface a re  substantially nonlinear, even i f  we use the 
simplified K a m n  theory. 

The calculations performed here show t h a t  the only sources of substanti
a l l y  nonlinear terms, which a re  of the re la t ive  order- p q k ,  i n  the s t r e s s  ten
sor components, a re  represented by the components of the tensor Tlk ( i ,  k = 
= 1, 2). This could have been foreseen. Indeed, the substantially nonlinear 
terms depend on t h e  components of the antisymmetric tensor Q s  ra ther  than on 
the tensor of s m a l l  deformations e r S .  This i s  confirmed, f o r  instance, by (11, 
9.2). 

Hereafter, t o  simplify the calculations we sha l l  omit terms of the r e l a - a  

t i v e  order - and of higher orders. 

Let us  now consider the  body forces @,determined from (11, 12.9). Firs t ,  
l e t  u s  study a l l  terms containing the quant i t ies  Ptg? .  In accordance with the 
re la t ive  accuracy adopted, t h e  quant i t ies  Pi; must be replaced by the compon
ents  of the tensor Nil;? of rank two, determined by (11, 6.12b). On the bas is  
of the above study we conclude tha t  the sum 

does not contain terms of the re la t ive  order- w e i k  and should be omitted. Con
sequently, 
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(i, k = 1, 2, 3). (8.11) 

After completing the  preliminary analysis,  we make use of (11, 12.10), a-
pressing t he  generalized Reciprocal Theorem. The above expression (11, 12.10), 
under the  previous assumptions on the  a w d l i a r g  system of forces,  displacements, 
and s t resses ,  again l eads  t o  an equation of t he  form of eq.(r.l), with several  
addi t ional  terms, including the  in t eg ra l  

(8.12) 


Making use of the Ostrogradskiy-Gauss formula, l e t  us transform the inte
g r a l  I as follows: 

From eqs.(a) and (k)  of t h i s  Section it w i l l  be seen t h a t  the  in tegra lsJJ  
is, 

over the  surface of the  she l l ,  containing the components of the  tensor  T i k ,  a r e  
cancelled. 

We neglect the  nonlinear terms i n  the  composition of the  surface forces  /337 
depending on 4’’ according t o  eqs.(8.8a) - (8.8b) and (8.10), since these terms 

3/2 .are of an order of smallness higher than peik 

Consequently, a t  the  degree of r e l a t i v e  accuracy adopted by us, the  only 
source of nonlinear terms i n  the  in t eg rcd i f f e ren t i a l  equations of t he  theory of 
s h e l l s  will be the  i n t e g r a l  
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Making use of (8,5a), and re ta in ing  in  it the  terms of the order - welk , 
we obtain 

where 

The in t eg ra l  I, en te r s  i n t o  the  right-hand s ide of eq.(5.4) with a posi
t i v e  sign, yielding 

(8.16) 
(SI

(i, t = l ,  2, 3; j, q =  1, 2; k ,  p=o ,  1, 2, ... , N). 

Equations (8.16 ) form the required system of nonlinear i n t eg rod i f f e ren t i a l  
equations of the theory of shel ls .  This system occupies a place intermediate 
between the system of equations (5.4) of the  l i n e a r  theory and the  general sys
tem of equations of **strong flexure''. However, so f a r  as we h o w ,  the  la t te r1338 
system has never been s e t  up o r  a t  l e a s t  has not yet been ser iously studied, 

Let u s  re turn  t o  the  system (8.16). Let us  assume, a s  above, t h a t  t he  
auxi l ia ry  system of loads  leads  t o  the  construction of focusing kernels of in

1 Itillt eg rod i f f e ren t i a l  equations. Then, outs ide a s tr ip  of width Mh 
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bordering the  contour of the  middle surface, t he  system (8.16) takes  the  fo l 
lowing form: 

1%) 

( i , r = l ,  2, 3 ; j ,  q==.1, 2; k , p = O ,  1, 2, * . * ,  N). 

Applying in te rpola t ion  formulas of the type of eq.(b.l), we replace the 
system of in t eg rod i f f e ren t i a l  equations (8.1’7) by a system of nonlinear d i f f e r 
e n t i a l  equations. 

W e  s h a l l  only give the  system of equations of the i n i t i a l  approximation, 
since t h e  construction of a system analogous t o  eq.(7.5a) involves no fundamen
ta l  d i f f i c u l t i e s ,  We f ind  

( l ,  r =  I ,  2,3; j ,  q =  1, 2;k ,  p = o ,  1, 2, ... , N). (8.18) 

If the s h e l l  i s  i n  equilibrium, then the system of d i f f e r e n t i a l  equations 
(8.18) is transformed i n t o  a system of nonlinear a lgebraic  equations. The so
l u t i o n  of the  system (8.18), and of the  more general and analogous system 
(7.5a), is, i n  the  general  case, a non-single-valued function. I n  order t o  se
l e c t  the  required branch of t h e  solution, one must inves t iga te  the gradual de
velopment of deformations of the  s h e l l  from i ts  i n i t i a l  undeformed s ta te .  The 
branch points o r  l i m i t  points  will correspond t o  the  c r i t i c a l  values of the  
load. 

One of the  p rac t i ca l  methods of  solving the s y s t e m  of equations (8.17) i s  
t o  replace it by a system of ordinarg d i f f e r e n t i a l  equations, using the  d is - & 
Crete-continuous method. Making use of a coordinate ne t  on the  middle surface, 
superposing the  point  M(xJ ) on the  nodes of t h e  net, and considering the  quan
t i t i es  I$ a t  the  nodes as generalized coordinates, we s h a l l  obtain a system of 
ordinary d i f f e r e n t i a l  equations analogous t o  the systems (7.5a) - (7.B). We 
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r e c a l l  t h a t  these systems could be constructed f o r  su f f i c i en t ly  strong focusing 
propert ies  of the kernels  of the  in t eg rod i f f e ren t i a l  equations and f o r  dimen
sions of the  ne t  such that, on superposition of the  point M(xJ)on one of t he  
nodes i n  the  region (C), t he re  would be no neighboring nodes. I n  t h i s  case, as 
noted i n  Sect.?, t h e  integrals over t h e  region (C) enter ing in to  e q ~ ~ ( 8 . 1 8 )  
w i l l  be functions of t he  nmibers of t he  nodes of the  net. L e t  u s  make use of 
t he  notation (7.4a) - ( 7 . 4 ~ )  and introduce the  addi t iona l  notation 

Here, a s  in Sect.?, n i s  the  number of a node of t he  net. 

The system of equations (8.18) now takes the  following form: 

(i, I-=. 1, 2, 3; j ,  s =  1, 2; k , p = 0 ,  1, 2, . . .  , N; n= 1, 2, ... 

(8.19) 

(8.20) 

The above statements on consideration of t he  system of equations ( 7 . B )  
can be applied, with cer ta in  additions,  t o  the  system of equations (8.20). 

Since, under the  simplifying assumptions adopted by us, the  nonlinear 
terms disappear from the  boundary conditions, the  equations of motion i n  the 
zone bordering the  contour of t he  middle surface w i l l  not d i f f e r  subs tan t ia l ly  
from eqs.(8.20). The method of approximate construction of the equations in 
the  bordering zone indicated i n  Sect.7 remains va l id  also in t h i s  case. 

Final ly  we note t h a t  t he  appl icat ion of the  method of equivalent l i n e a r i 
zation, analyzed i n  Chapter IV,  makes it possible t o  replace the s y s t e m  (8.20) 
by the l i n e a r  system of equations (?.%), provided the  e l a s t i c  constants a r e  
properly substi tuted.  

I n  the  concluding Section of t h i s  Chapter we w i l l  draw generalizing con
clusions on the  proposed methods and give a general character izat ion of t h e i r  
significance f o r  t he  mechanics of shells. 

Section 9. 	 On the  Construction of Kernels of_-rntegrodifferent ia l  
Equations with Focusing Prope%ies 

The preceding portion of t h i s  Chapter was based on the  p o s s i b i l i t y  of con
s t ruc t ing  a s y s t e m  of auxi l ia ry  displacements, leading t o  kernels of integro
d i f f e r e n t i a l  equations with propert ies  which, i n  accordance with C.LanczoSn-, w e  

x- See the  passage c i ted  i n  Section 2 of the  book by C.Lanczos. 
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w i l l  c a l l  focusing. It w i l l  be c l ea r  from the  content' of Sects.2 and 3 t h a t  an 
, i d e a l  focus is evidently impossible, j u s t  as it i s  impossible i n  op t i ca l  in
struments. However, as we have shown i n  Sects.2 and 3,.a focusing property 
su f f i c i en t  t o  guarantee the  required accuracy of t he  results can indeed be 
obtained. 

However, t he  use of the  theory of generalized functions opens new possi
b i l i t i e s  f o r  the  construction of kernels with idea l  focusing properties,  i.e., 
propert ies  corresponding t o  the  perturbations of an e l a s t i c  medium embracing a 
s t r i c t l y  bounded region of space and vanishing beyond those bounds. These ap
p l ica t ions  of the  theory of generalized functions would go beyond the scope of 
t he  present study. 

In Sects.2 and 3, the focusing act ion of t he  load was obtained by con
s t ruc t ing  the  functions % (CY)and % (CY)according t o  eqs. (2.27) - (2.29). These 
functions determined the  d i s t r ibu t ion  of t h e  s i n g u l a r i t i e s  of the  f i e l d  of am
i l i a r y  displacements and s t r e s ses  on t h e  segments of t he  s ingular  l i n e  going 
beyond the  boundaries of the region bounded by the  surface of the  she l l .  As 
already noted, the  exact solution of the  problem of the  required d i s t r ibu t ion  
of s ingu la r i t i e s  can go beyond the  limits of c l a s s i c a l  analysis.  If we abandon 
the  requirement of "exact focusing", then the methods of constructing the  fo
cusing load given i n  Sects.2 and 3 can be simplified. 

Let us  give up the  determination of the functions %(CY)and &(CY). The 
f i e l d  of displacements and s t r e s ses  caused in the  s h e l l  by ac t ion  of the  loads 
& (a)and 99 (CY)will l ikewise possess weak focusing properties.  To strengthen 
these properties, l e t  us multiply the displacements caused by the loads %(CY) 
and %(CY)by a function of the  point N, which i s  damped with su f f i c i en t  rapid
i t y  with increasing dis tance of the  point N from the  s ingular  l ine ,  and which, 
on the singular l i ne ,  becomes unity. 

An example of a f ac to r  strengthening the  focusing act ion of the  load i s  
the  function 

where 

k >> 0, while f ( r )  i s  a monotonically increasing, everywhere d i f fe ren t iab le ,  
and continuous function sa t i s fy ing  the condition 

f ( 0 )  =0 (9.3) 

as well as the  condition t h a t  t he  der ivat ives  s h a l l  be bounded. as, ?(=vi 



df 

W e  r e c a l l  t h a t  y, and 7, are the  rectangular Cartesian coordinates em- / 3 U  
ployed i n  Sect.2. 

The f ac to r  of t h e  form (9.1) introduced in to  the  right-hand s ides  of q u a 
t i o n s  (2.la) - (2.lb) permits constructing the  f i e l d  of displacements satisfy
ing  the inhomogeneous equations of equilibflum of the  e l a s t i c  body caused by 
the  f i e l d s  of body forces  i n  t h e  unbounded e l a s t i c  medium, approaching zero as 
r increases without l i m i t .  The point M(T), ), i f  t he  condition (9.3) i s  satis

f i e d  and i f  the  der ivat ives  
dY, 1Yi'Q 

a r e  bounded, will, as before, be the  

point of appl icat ion of the  u n i t  concentrated force. The fu r the r  constructions 
of the  in t eg rod i f f e ren t i a l  equations do not i n  pr inc ip le  d i f f e r  from those con
sidered above. 

A pos i t ive  coeff ic ient  k can always be chosen such that, on the  boundary 
of the assigned region (E)  and outside t h a t  region, the posi t ive values of t he  
components of the  auxi l ia ry  displacements, s t r e s s e s  and body forces, s h a l l  not  
exceed prescribed small quant i t ies .  This will ensure the  focusing propert ies  
of t h e  kernels  of t he  in tegrodi f fe ren t ia l  equations. 

A l l  above elementary conclusions require no de ta i led  proof, since they re
sult from the  well-known ana ly t ic  propert ies  of t h e  pa r t i cu la r  solut ions of the  
equations of s t a t i c s  of an e l a s t i c  medium, corresponding t o  the  act ion of con
centraPed forces. They do, however, confirm the existence of integrodifferen
t i a l  equations of the  theory of s h e l l s  with focusing kernels, which a r e  of fun
damental significance in the  s t a t i c s  and dynamics of shel ls .  

Section 10. In tegrodi f fe ren t ia l  Equations Defining Contiguous 
~Solutions of the Bok- Problems__of the  S t a t i c s  

and Dvnamics of She i l s  

Here we will b r i e f l y  character ize  another method of s e t t i ng  up and solving 
the  in t eg rod i f f e ren t i a l  and in t eg ra l  equations of t he  s h e l l  theory. T h i s  meth
od was f i r s t  given by us  i n  1946 (Bib1.23e) and w a s  fu r the r  developed l a t e r  
(Bib1.23f ), (Bib1.23i). Several reports  have been published i n  the  meantime,in 
which t h i s  method i s  applied t o  various problems of t h e  s t a t i c s  of shall+.  

The problems considered by these methods a r e  special  case3 of the  general 
problem which can be defined as follows: The solut ion of a boundary problem of 
t h e  s t a t i c s  o r  dynamics of s h e l l s  i s  known. Required, t o  construct t h e  solu
t i o n  of a d i f f e ren t  problem close t o  the  first one by some cr i te r ion .  

This problem w a s  posed by u s  previously (Bib1.23e). Solutions close by 
some d e f i n i t e  c r i t e r i o n  we term contiguous o r  adjacent. In the  above works, 
t h i s  problem was  solved mainly i n  one version. The solution of a boundary /3k2
problem of the  equilibrium of a plate ,  onto whose middle plahe was mapped the  
middle surface of a shel l ,  was assumed t o  be known. Then, a system of integro
d i f f e r e n t i a l  equations or, i n  par t icu lar ,  i n t e g r a l  equations, w a s  constructed 

* We might mention t h e  works (Bibl.17, 31a,b; 
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which yielded the  solut ion of an adjacent boundary problem f o r  the  she l l .  An 
exception w a s  another study (BibLglb),  where the  solution. of the  boundary 
problem of s t a t i c s  of a cy l indr ica l  s h e l l  was used f o r  solving t he  boundary 
problem of s t a t i c s  of a cy l indr ica l  s h e l l  with modified boundary conditions. 

The pr inarg means f o r  constructing the in t eg rod i f f e ren t i a l  and i n t e g r a l
equations of an adjacent problem,was the  appl icat ion of t h e  Reciprocal Theorem 
according t o  our previous s tud ies  (Bib1.23e) which we later developed in great  
d e t a i l  (Bib1.23h). The essence of these considerations reduces t o  the  follow
ing: It i s  usual ly  asser ted t h a t  the  Reciprocal Theorem connects two systems 
of displacements and the  corresponding forces  o r  s t r e s s e s  i n  some e l a s t i c  body 
(11, Sect.12). The in t e rp re t a t ion  of this theorem can be expanded by consi
dering two systems of displacements i n  two d i f f e r e n t  e l a s t i c  bodies with m t u 
al ly  connected ar i thmetizat ion of t h e i r  i n t e r i o r  points  by systems of coordi
na tes  having t h e  same r e l a t i v e  dimensionality. Then the  system of displace
ments of t he  second body may be a t t r ibu ted  t o  the  first body, by determining 
the external  forces  corresponding t o  these displacements from the  equations of 
the theory of e l a s t i c i t y .  

This treatment of t h e  theorem of work and rec iproc i ty  has proved f r u i t f u l ,  
y ie lding new approaches t o  the solut ion of problems, not only of the  mechanics 
of she l l s  but  a l s o  of t h e  s t a t i c s  and dynamics of one-dimensional and three-
dimensional problems of the  theory of  e l a s t i c i t y  and p l a s t i c i t p .  It a l s o  be
came possible t o  separate, from the displacements of points  of the  middle sur
face, the "plate terms" from the terms tha t  depend on the curvature of the  mid
d l e  surface. The separation of the "plate terms" has helped t o  solve a number 
of problems, mainly on the  equilibrium of  cy l indr ica l  she l l s ,  although the  
method has been developed f o r  s h e l l s  of a r b i t r a r y  form (Bib1.23g-i). 

Limited space prevents u s  from examining t h i s  method in more d e t a i l ;  we 
have, therefore,  found it more expedient t o  focus the  reader's a t ten t ion  on the  
new methods of appl icat ion o f  the  Reciprocal Theorem, leading t o  the  construc
t i o n  of equations wi th  focusing kernels. 

Several statements should be made i n  conclusion:_. 

1. The described method can be fur ther  improved by introducing focusing 
fac tors  of the  form of eq.(q.l) i n to  the system of auxi l ia ry  displacements. On 
approximate replacement of the system of in tegrodi f fe ren t ia l  equations of equi
l ibrium of a s h e l l  by a system of a lgebraic  equations, this will permit u s  t o f 3 0  
decrease the  number of unknowns in each equation. 

2. The method of constructing equations t h a t  determine the adjacent solu
t i ons  permits constructing a chain o r  continuity of solut ions i n  which each so
lu t ion  r e s u l t s  from the  preceding solution. This, of course, requires  a la rge  
amount of work. 

3. The system of i n t e g r a l  equations of  equilibrium of the theory of  shel ls ,  

* Cf., f o r  example (Bib1.23c), as well a s  the paper by N.A.Kil'chevskiy and 
L.V.Lirsa, and the  paper by R.A.Mikhaylenko i n  Izv. Kiev. Politekhn. Inst., 
Vo1.31, 1961. 
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obtained by transformation of t he  in tegrodi f fe ren t ia l  equations, can be a sys
tem of F'redholm in t eg ra l  equations of the  second kind. This system, however, 
may have no unique solution, i f  the conditions of Fredholmts th i rd  theorem are 
satisfied. An example of this case i s  given elsewhere (Bib1.23j). 

Section 11. Concluding Remarks on t h e  In tegrodi f fe ren t ia l  and In t eg ra l  
Equations of the  S t a t i c s  and Dynamics of She l l s  

We a r e  here giving general conclusions on the  r o l e  played by t h e  results 
of t he  invest igat ions given i n  Chapter V f o r  t he  general theory of shells.  Here 
we must dis t inguish between the  purely theore t ica l  value and the  applied value 
of the  methods considered. Let u s  f irst  characterize t h e  theore t ica l  value of 
t he  method of in tegrodi f fe ren t ia l  equations resu l t ing  from the  Reciprocal The
orem. 

We have shown t h a t  t h e  appl icat ion of the  Reciprocal Theorem supplements 
t he  solution methods f o r  t he  problem of reducing the  three-dimensional problems 
of the  theory of e l a s t i c i t y  t o  the  two-dimensional problems of the  theory of 
s h e l l s  by a subs tan t ia l ly  new method. 

One of t he  advantages of t h i s  method, i n  our opinion, i s  tha t  i t s  applica
t i o n  does not require  t h a t  the  components of the body and surface forces  ap
pl ied t o  the  she l l  be d i f fe ren t iab le ,  i n  contrast  t o  the  methods indicated a t  
the  beginning of Chapter 111, which require sa t i s f ac t ion  of t h e  conditions t h a t  
the  vector components of t he  prescribed forces  be different iable .  In (111, 
Sect.19) we note t h a t  the  solution of t he  equations resu l t ing  from the  general 
equation of dynamics l ikewise requires t h a t  t he  vector components of the pre
scribed forces  be d i f f e ren t i ab le  o r  t h a t  t he  theory of generaltced functions 
be applied. These d i f f i c u l t i e s  a re  eliminated when the  methods given in this 
Chapter a r e  applied. The smoothing influence of integrat ion permits us, with
out analyt ic  complications, t o  consider a s h e l l  loaded by concentrated forces. 

In  t h i s  connection, we must emphasize the  fundamental difference between 
the  methods considered i n  Sects.1 - 9 of this Chapter and t h e  methods mentioned 
i n  Sect.10. This difference consis ts  i n  the  f a c t  t h a t  t he  method i n  Sect.10 i s  
not an independent method of reduction, but i s  based on application of t he  re
sults of a preliminary reduction. 

Several works have recent ly  been published on new methods for se t t i ng  up/344 
t h e  in tegra l  equations of the  s t a t i c s  and dynamics of shel ls .  These works give 
methods t h a t  permit replacement of the  system of d i f f e r e n t i a l  equations of equi
l ibrium o r  motion of an element of a shel l ,  compatibly with the boundary con
d i t ions ,  by equivalent s y s t e m s  of in tegrodi f fe ren t ia l  o r  in tegra l  equations-!!-. 

These methods are re la ted  t o  the  method given i n  Sect.10. It i s  c l ea r  
t h a t  the  results of t he  replacement of the  system of d i f f e r e n t i a l  equations by 
an equivalent system of in t eg ra l  equations w i l l  not  eliminate the e r r o r  intro
duced in to  the  system of d i f f e r e n t i a l  equations by the  application of various 

+$ C f .  A.A.Berezovskiy, Integrodiff  e r e n t i a l  Equations of the-Nonlinear Theory of 
F l a t  Thin Shells,  Ukr.Matemat. Zhurnal, Vol.XI1, 1960; and (Bibl.19). 
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simplifying assumptions, f o r  example, the  Kirchhoff-Love assumptions, V.Z.Vla
sovts  simplifying assumptions of the  technical  theory of she l l s ,  and others. 
For this reason, t he  cognitive value of these methods i s  lower than t h a t  of t he  
general method considered in Sects.1 - 9, which autonomously solves the  reduc
t i o n  problem. 

The method considered i n  Sects.1 - 9 permits of fu r the r  generalizations,  
based on the  d i s t r ibu t ion  of s i n g u l a r i t i e s  of t h e  displacements of the auxi l i 
a ry  problem, not on a l i n e  but  in  p a r t  of the  volume of t he  she l l ,  In  t h i s  
case, we can construct various generalized averages of the  components of the  
displacement vector and the components of t he  s t r a i n  and s t r e s s  tensors, thus 
eliminating the complications connected with the  preliminary approximate repre
sentat ions of the  displacement vector components by eqs. (3.9). 

We w i l l  d iscuss  now the  p rac t i ca l  value of the  above methods. The method 
based on the appl icat ion of i n t eg rod i f f e ren t i a l  and in t eg ra l  equations with fo
cusing kernels, a s  i s  obvious from the  content of Sects.1 - 9, i s  an e f f ec t ive  
means f o r  a numerical solut ion of the boundary problems of t h e  s h e l l  theory, In  
exact ly  the same way, the  methods given in Sect.10 can be used a s  the b a s i s  f o r  
a numerical solution of these boundary problems. It seems t o  us  tha t  t he  meth
ods considered a r e  more adaptable t o  the  appl icat ion of numerical computational 
methods than systems of d i f f e r e n t i a l  equations, since the replacement of the 
i n t e g r a l  by a f i n i t e  sum introduces a smaller e r r o r  than the replacement of de
r iva t ives  by a r a t i o  of f i n i t e  differences.  The inconvenience connected with 
the  necessity of extending the sums, approximately replacing in tegra ls ,  over 
a l l  nodes of the coordinate net  of the  middle surface, which leads  t o  equations 
with a la rge  number of unknowns, i s  eliminated by the  introduction of focusing 
kernels. Of course, a l l  numerical methods require the  use of computers, 

The pr inc ipa l  shortcoming of the  study i n  Chapter V i s  the lack of calcu
l a t ed  ana ly t ic  expressions and Tables of focusing kernels. We have confined /345 
ourselves t o  a descr ipt ion of the  theo re t i ca l  pr inciples  of the method, since 
construction of the  ana ly t ic  expressions f o r  the kernels and the corresponding 
Tables i s  very tedious and would take a r e l a t ive ly  long time, These data  w i l l  
be published i n  the next pa r t  of t h i s  study, 

It is  c lear  t h a t  a r e a l i s t i c  study of focusing kernels might compel the  
introduction of pa r t i cu la r  correct ions t o  the above-given methods of t h e i r  con
struct ion,  but there  can be no doubt t h a t  this would not a f f e c t  the  fundamental 
p r inc ip les  of the method i t s e l f .  

A shortcoming inherent i n  t h e  e n t i r e  study i s  the  f a c t  t h a t  we neglected 
t h e  d iss ipa t ive  forces  of various or ig in  generated during the motion of t h e  
elements of the shell .  We de l ibera te ly  adopted t h i s  extensive simplification, 
s ince our object was  t o  s e t  fo r th  t h e  pr inciples  of the ana ly t ic  theory of 
she l l s ,  and e i t h e r  the introduction o r  the neglecting of d i ss ipa t ive  forces  
does not go t o  the  foundation of t he  theory. 

We r e c a l l  t h a t ,  i n  many papers on the  dynamics of she l l s ,  the  e f f ec t  of 
t h e  d iss ipa t ive  forces  has likewise not been subjected t o  investigation. It 
was noted i n  these cases t h a t  the influence of the d i s s ipa t ive  forces, a s  shown I 



by experiment, causes a rapid damping of f r e e  o s c i l l a t i o n s  (Bibl.12). This 
inconsistency, which sometimes appears i n  the  dynamics of she l l s ,  i s  elimin
ated in a number of more recent studies,  including the  Bolotin monograph 
(Bib1.2c ). 

The method of i n t e g r a l  and in t eg rod i f f e ren t i a l  equations i n  the  theory of 
s h e l l s  has not  received general recognition. As A.I.Lurtye so v iv id ly  puts  it, 
i t s  llcompetitivenessn s t i l l  requires  confinnation. 

W e  assume t h a t  t h e  development of the  theory of equations with focusing 
kernels and examples of t h e i r  appl icat ion t o  special  problems will y ie ld  con
vincing confirmation'of t he  power of this new method. It i s  piXrticularly im
portant t o  character ize  the  f i e l d  of special  problems i n  which t h i s  method has 
obvious advantages o v e r t h e  methods of c l a s s i c a l  s h e l l  theory. This f i e l d  
should be t h a t  of pa r t i cu la r ly  complex problems. We r e c a l l  t h a t  the  methods 
of ana ly t ic  mechanics have long been applied t o  problems of pa r t i cu la r  d i f f i 
culty, whose solut ion could not  be d i r e c t l y  obtained from the  laws of Newton 
and the  general theorems of dynamics. D.Leach wr i tes  t h a t  the  appl icat ion of 
ana ly t ic  mechanics t o  the  solut ion of simple problems i s  as i n e f f i c i e n t  as i s  
the  use of an a i rp lane  t o  cross a street-%. This statement i s  fully applicable 
t o  the ana ly t ic  mechanics of shel ls .  

The f i e l d  of problems f o r  which it is  obviously expedient t o  apply the  new 
methods w i l l  gradually become outlined'n".t. 

* D.Leach, Class ica l  Mechanics. IL, Moscow, 1961, 

+e+The first s t ep  i n  this di rec t ion  has been taken. Cf.,interalia,(Bibl.l7,31b) 
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